吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (3): 847-854.doi: 10.13229/j.cnki.jdxbgxb20200180

• 材料科学与工程 • 上一篇    下一篇

温热成形对AA5754铝合金静态力学性能的影响

庄蔚敏1(),王鹏跃1,高瑞娟2,解东旋3   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.太原学院 机电工程系,太原 030032
    3.一汽-大众汽车有限公司,长春 130011
  • 收稿日期:2020-02-18 出版日期:2021-05-01 发布日期:2021-05-07
  • 作者简介:庄蔚敏(1970-),女,教授,博士生导师. 研究方向:车身结构设计与优化,有限元分析和金属成型技术.E-mail:zhuangwm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51775227)

Effect of hot forming on static mechanical properties of AA5754 aluminum alloy

Wei-min ZHUANG1(),Peng-yue WANG1,Rui-juan GAO2,Dong-xuan XIE3   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.Department of Mechanical and Electrical Engineering,Taiyuan University,Taiyuan 030032,China
    3.FAW-Volkswagen Automotive Co. ,Ltd. ,Changchun 130011,China
  • Received:2020-02-18 Online:2021-05-01 Published:2021-05-07

摘要:

通过高温预拉伸试验和室温拉伸试验分析了温热预变形对AA5754铝合金失效应变、抗拉强度、屈服强度的影响规律。建立了损伤耦合预变形本构模型,以表征不同预应变材料的静态力学性能。以车门防撞梁为例,应用该本构模型分析了热冲压过程中的预变形和厚度变化对其弯曲性能的影响。结果表明:温热预变形会直接降低AA5754铝合金的静态力学性能;300 ℃下0.7的应变比率使试样的失效应变和抗拉强度分别减少了62%和16%;本文所建立的本构模型可以准确地预测温热成形对AA5754铝合金静态力学性能的影响。

关键词: 车辆工程:AA5754铝合金, 车门防撞梁, 温热成形, 本构模型

Abstract:

The effects of thermal deformation on the failure strain, ultimate stress, and yield stress of AA5754 aluminum alloy are analyzed by high temperature pre-tension test and room temperature tensile test. A damage coupling pre-forming constitutive model is established to characterize the relationship between forming strain and service performance. This constitutive model is used to analyze the effects of forming damage and thickness change on the bending performance of side-door impact beam. The results show that forming damage directly reduces the service performance of AA5754 aluminum alloy. When the forming strain is 0.7 at 300 ℃, the failure strain and ultimate stress are reduced by 62% and 16%, respectively. The proposed constitutive model can accurately predict the effect of hot forming on the static mechanical properties of AA5754 aluminum alloy.

Key words: vehicle engineering, AA5754 aluminum alloy, side-door impact beam, hot forming, constitutive model

中图分类号: 

  • U463.82

图1

试件的形状及尺寸"

图2

MMS-200热模拟试验机"

表1

高温预拉伸试验方案"

温度

/°C

参数应变比率失效
00.30.50.7
300应变量/mm00.1530.2540.3560.509
拉伸量/mm01.8333.2204.7557.372
400应变量/mm00.1810.3030.4240.606
拉伸量/mm02.2163.9345.8739.260

图3

高温预拉伸试验程序"

图4

高温预拉伸试验结果"

图5

常温拉伸试验结果"

表2

高温预拉伸后试样的横截面积 (mm2)"

应变比率温度/℃
300400
0.029.8229.80
0.327.0424.82
0.524.7821.37
0.721.8317.78

图6

常温拉伸的应力-应变曲线"

图7

应变比率与失效应变、抗拉强度和屈服应力的关系"

表3

损伤耦合预变形的本构材料常数"

材料常数数值材料常数数值
K071.904η17.9862
k043.53Δ00.25
n1.8Δ10.013
B389.3Δ21.3135
ξ02.3095E7.055×104
ξ10.9238

图8

计算(实体曲线)和试验(符号)应力-应变关系对比"

图9

应变比率为0.5的热拉伸仿真与试验对比"

图10

应变比率为0.5的仿真与DIC试验结果对比"

图11

不同的应变比率下仿真(实线)与试验(符号)的载荷位移曲线对比"

图12

车门防撞梁截面尺寸"

图13

防撞梁断面厚度和损伤分布"

图14

三点弯曲仿真模型"

图15

厚度和损伤对载荷和弯曲载荷缩减比的影响"

表4

防撞梁极限抗弯曲载荷和失效位移"

模型A模型B模型C
最大载荷/N298428302713
失效位移/mm164150138

图16

厚度和损伤对吸能-位移和吸能缩减比的影响"

1 Zheng K L, Dong Y C, Zheng J H, et al. The effect of hot form quench (HFQ) conditions on precipitation and mechanical properties of aluminium alloys[J]. Materials Science and Engineering A, 2019, 761:138017.
2 Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping[J]. Wear, 2019, 426-427:348-356.
3 Zhou J, Wang B, Lin J, et al. Forming defects in aluminum alloy hot stamping of side-door impact beam[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11):3611-3620.
4 Zhuang Wei-min, Xie Dong-xuan, Chen Yan-hong. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel[J]. Chinese Journal of Mechanical Engineering, 2016, 29:747-755.
5 George R, Worswick M J, Detwiler D, et al. Impact testing of a hot-formed B-pillar with tailored properties-experiments and simulation[J]. SAE International Journal of Materials and Manufacturing2013, 6(2):157-162.
6 Cheng W, Zhang H L, Fu S, et al. A process-performance coupled design method for hot-stamped tailor rolled blank structure[J]. Thin-Walled Structures, 2019, 140:132-143.
7 Li N, Lin J G, Dean T A. Development of unified viscoplastic damage model for crashworthiness analysis of boron steel safety components with tailored microstructures[J]. Applied Mechanics and Materials, 2015, 784:427-434.
8 Zhuang Wei-min, Wang Peng-yue, Xie Dong-xuan, et al. Experimental study and a damage model approach to determine the effect of hot forming deformation on the service performance of 22MnB5 steel[J]. Journal of Manufacturing Processes, 2019,47: 10-21.
9 Na J, Mu W, Qin G, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry[J]. International Journal of Adhesion and Adhesives, 2018, 85:138-148.
10 Huang C, Liu J, Jia X. Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(9):1140-1150.
11 Lin J, Mohamed M, Balint D, et al. The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications[J]. International Journal of Damage Mechanics, 2014, 23(5):684-701.
[1] 陈学文,王继业,杨喜晴,皇涛,宋克兴. Cr8合金钢热变形行为及位错密度演变规律[J]. 吉林大学学报(工学版), 2020, 50(1): 91-99.
[2] 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629.
[3] 叶辉, 胡平, 申国哲, 孙宏图, 杨姝. 利用高强度钢板温热成形结构件改善车身侧面抗撞性能[J]. 吉林大学学报(工学版), 2010, 40(增刊): 101-0105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!