吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1461-1469.doi: 10.13229/j.cnki.jdxbgxb20200294

• 通信与控制工程 • 上一篇    

超声波三维定位系统中基线长度与误差传递关系的分析

燕学智1(),王子婷1,王昕2()   

  1. 1.吉林大学 通信工程学院,长春 130022
    2.吉林大学 机械与航空航天工程学院,长春 130022
  • 收稿日期:2020-05-05 出版日期:2021-07-01 发布日期:2021-07-14
  • 通讯作者: 王昕 E-mail:yanxz@jlu.edu.cn;wxin@jlu.edu.cn
  • 作者简介:燕学智(1972-),男,教授,博士.研究方向:阵列信号处理与超声定位技术. E-mail:yanxz@jlu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(6163000078);吉林大学高层次创新团队项目(2017TD-19);国家重点研发计划项目(2016YFB1001304);吉林省科技发展计划重点科技攻关项目(20170204030GX)

Analysis of relationship between baseline length and error transfer in ultrasonic 3D positioning system

Xue-zhi YAN1(),Zi-ting WANG1,Xin WANG2()   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130022,China
    2.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2020-05-05 Online:2021-07-01 Published:2021-07-14
  • Contact: Xin WANG E-mail:yanxz@jlu.edu.cn;wxin@jlu.edu.cn

摘要:

分析了空气介质中三维超声波定位系统的误差传递模型,通过实验得到了不同基线长度下误差敏感度的分布。三维超声定位系统的定位误差主要取决于超声测距误差和运算过程中误差传递两个方面,本文主要研究运算过程中误差传递的关系。首先,建立了定位坐标相对于超声波传播距离的偏微分方程,进而通过全微分方程推导得到误差传递关系,即误差灵敏度ε的表达式;由ε的表达式可知,接收阵列基线的相对长度和测距误差符号方向(差模测距误差和共模测距误差)直接影响误差灵敏度;然后,分别在长基线和短基线条件下,讨论共模和差模测距误差对误差灵敏度的影响,通过实验给出误差灵敏度的空间分布图。实验结果表明:长基线超声定位系统中定位误差是差模和共模测距误差共同作用结果;短基线超声定位系统中定位误差主要来源于差模测距误差,共模测距误差可以忽略,且短基线系统中差模测距误差条件下误差灵敏度要比长基线系统误差灵敏度大很多;长、短基线下灵敏度误差等高线均以类似俄罗斯套娃的形式逐层分布;误差灵敏度的空间分布图也解释了超声定位中误差分布不均匀的现象。最后,本文给出了提高定位精度的措施。

关键词: 三维超声定位, 误差灵敏度, 长、短基线, 误差传递, 空气介质

Abstract:

In this paper, the error transfer model of three-dimensional ultrasonic positioning (TDUP) system in air medium is provided. The distribution of error sensitivity under different baseline length is obtained through experiments. The positioning accuracy of the TDUP system mainly depends on the distance measurement error and the error transmission brought by the process of calculation. This paper is focused on the study of the error transition. Firstly, the partial differential equations of the positioning coordinates with respect to the ultrasonic propagation distance are established, and the error transfer model, the expression of the error sensitivity ε, is derived by the total differential equation. According to the expression of ε, the relative length of the receiving array baseline and the direction of the distance error symbol (differential mode distance error and common mode distance error) directly affect the error sensitivity. The spatial distribution of error sensitivity is given by experiment. Next, under the condition of long baseline and short baseline, the influences of common mode and differential mode distance errors on the error sensitivity are discussed, and the spatial distribution of error sensitivity is given through experiments. The experimental results show that the positioning error in the long baseline ultrasound positioning system is the result of the combination of differential mode and common mode distance error. The positioning error in the short baseline ultrasonic positioning system mainly comes from the differential mode distance error, and the common mode ranging error could be ignored. In addition, the error sensitivity of short baseline system is much higher than that of long baseline system under the condition of difference mode. T The contour of sensitivity error is distributed layer by layer in the form of Russian dolls. The spatial distribution of error sensitivity further explains the uneven distribution of errors in ultrasonic localization. Finally, the paper proposes solutions to improve the positioning accuracy.

Key words: three-dimensional ultrasonic localization, error sensitivity, long and short baseline, error transmission, air medium

中图分类号: 

  • TN911.72

图1

基于TOA三维超声定位原理"

图2

长基线超声定位系统共模误差灵敏度"

图3

长基线超声定位系统差模误差灵敏度"

图4

短基线超声定位系统共模误差灵敏度"

图5

短基线超声定位系统差模误差灵敏度"

1 Khyam M O, Ge S S, Li X, et al. Highly accurate time-of-flight measurement technique based on phase-correlation for ultrasonic ranging[J]. IEEE Sensors Journal, 2017, 17(2): 434-443.
2 Gao Yong-qiang, Hao Xiao-jian. Weak electrical infrared signal detection system based on td scdma dual-polarized antenna [J]. Electric Applications, 2014, (18): 60-64.
3 Jackson J C, Summan R, Dobie G I, et al. Time-of-flight measurement techniques for airborne ultrasonic ranging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(2): 343-355.
4 Jiang S B, Yang C M, Huang R S, et al. An innovative ultrasonic time-of-flight measurement method using peak time sequences of different frequencies: part I[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(3): 735-744.
5 Walter C, Schweinzer H. Locating of objects with discontinuities, boundaries and intersections using a compact ultrasonic 3D sensor[C]∥ International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan,South Korea, 2014: 591-600.
6 Hightower J, Borriello G. Location systems for ubiquitous computing[J]. Computer, 2001, 34(8): 57-66.
7 梁元诚. 基于无线局域网的室内定位技术研究与实现[D]. 西安:电子科技大学通信与信息工程学院, 2009.
Liang Yuan-cheng. Research and implementation of indoor location technology based on wireless LAN[D]. Xi'an:School of Communication and Information Engineering, University of Electronic Science and Technology of China, 2009.
8 郭纲. 基于双指数模型的超声定位算法及其应用研究[D]. 长春:吉林大学通信工程学院, 2008.
Guo Gang. Study on the ultrasonic localization algorithim based on double exponential model and its applican[D]. Changchun:College of Communication Engineerings, Jilin University, 2008.
9 周艳, 赵海, 张君, 等. 普适计算中的定位误差分析[J]. 电子学报, 2009, 37(2): 382-386.
Zhou Yan, Zhao Hai, Zhang Jun, et al. Location error analysis of pervasive computing[J]. Journal of Electronics, 2009, 37(2): 382-386.
10 陈永光, 李昌锦, 李修和. 三站时差定位的精度分析与推算模型[J]. 电子学报, 2004, 32(9): 1452-1455.
Chen Yong-guang, Li Chang-jin, Li Xiu-he. A precision analyzing & reckoning model in tri-station TDOA location[J]. Journal of Electronics, 2004, 32(9): 1452-1455.
11 李壮. 短基线定位关键技术研究[D]. 哈尔滨工程大学水声工程学院, 2013.
Li Zhuang. The study of the key technologies for short baseline position system[D]. School of Hydroacoustic Engineering, Harbin Engineering University, 2013.
12 朱国辉, 冯大政, 聂卫科. 传感器位置误差情况下基于多维标度分析的时差定位算法[J]. 电子学报, 2016, 44(1): 21-26.
Zhu Guo-hui, Feng Da-zheng, Nie Wei-ke. Multidimensional scaling based TDOA localization algorithm with sensor location errors[J]. Chinese Journal of Electronics, 2016, 44(1): 21-26.
13 Wang Y, Huang J, Yang L, et al. TOA-based joint synchronization and source localization with random errors in sensor positions and sensor clock biases[J]. Ad Hoc Networks, 2015, 27: 99-111.
14 周向阳. 基于超声相控阵的已知场景多目标识别与定位研究[D]. 绵阳:西南科技大学信息工程学院,2016.
Zhou Xiang-yang. Research on the recognition and location of multi-target based on ultrasonic phased array[D].Mianyang:School of Information Engineering, Southwest University,2016.
15 孙微, 王方勇, 乔钢, 等. 基于长基线水声定位系统误差分析以及定位精度研究[J]. 声学与电子工程, 2016, 30(2): 14-19, 24.
Sun Wei, Wang Fang-yong, Qiao Gang, et al. Error analysis of underwater acoustic positioning system based on long baseline Research on positioning accuracy[J]. Acoustics and Electronic Engineering, 2016, 30(2): 14-19, 24.
16 Yan X, Wu Q, Wang X, et al. Semicool temperature compensation algorithm based on the double exponential model in the ultrasonic positioning system[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 995-1010.
17 王鼎, 尹洁昕, 刘瑞瑞,等. 同步时钟偏差存在下的时差定位性能分析及改进的定位方法[J]. 电子学报, 2018, 46(6): 1281-1288.
Wang Ding, Yin Jie-xin, Liu Rui-rui, et al. Performance analysis and improvement for TDOA source localization in the presence of synchronization clock bias[J]. Acta Electronica Sinica, 2018, 46(6): 1281-1288.
18 Ho K C, Lu X, Kovavisaruch L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684-696.
19 Wang P, Wang W, Du J, et al. Experimental study of PD direction finding based on stereo ultrasonic array sensor of EFPI[C]∥The 2nd IEEE Conference on Energy Internet and Energy System Integration, Beijing, 2018: 1-6.
20 Yan X, Wu Q, Wang X, et al. Semicool temperature compensation algorithm based on the double exponential model in the ultrasonic positioning system[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 995-1010.
21 尹冠军, 范皓然, 康栋栋, 等. 阵元失效对超声阵列换能器的影响及优化研究[J]. 电子学报, 2017, 45(8): 1995-2000.
Yin Guan-jun, Fan Hao-ran, Kang Dong-dong, et al. The optimization research on element failure of ultrasonic array transducer[J]. Chinese Journal of Electronics, 2017, 45(8): 1995-2000.
22 Choi J, Choi H T. Underwater vehicle localization using angular measurements of underwater acoustic sources[C]∥The 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, South Korea, 2015: 235-238.
23 Tan H P, Gabor A F, Eu Z A, et al. A wide coverage positioning system (WPS) for underwater localization[C]∥IEEE International Conference on Communications, Cape Town, South Africa, 2010: 1-5.
24 Morgado M, Oliveira P, Silvestre C. Experimental evaluation of a USBL underwater positioning system[C]∥Proceedings of ELMAR, Zadar, Croatia, 2010: 485-488.
[1] 刘勇,邓方顺,刘小林,闵思婕,王鹏. 基于双混沌振子的最小频移键控信号频率估计方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1357-1362.
[2] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[3] 崔林林, 宋萍, 石庚辰. 基于区域划分的声定位算法及精度分析[J]. 吉林大学学报(工学版), 2017, 47(1): 288-293.
[4] 孙晓颖, 刘壮, 秦宇镝, 刘妍妍. 可硬件系统实现的多频近场源定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2080-2086.
[5] 尚佳栋, 王祖林, 周丽娜, 杨蓝. 稳健的多跳频信号跟踪方法[J]. 吉林大学学报(工学版), 2015, 45(6): 2056-2061.
[6] 王宏志,王贤龙,周婷婷. 基于光滑0范数的图像分块压缩感知恢复算法[J]. 吉林大学学报(工学版), 2015, 45(1): 322-327.
[7] 康荣宗,田鹏武,于宏毅. 基于量化噪声谱分析的ADC无杂散动态范围[J]. 吉林大学学报(工学版), 2015, 45(1): 328-334.
[8] 田文飚, 芮国胜, 张海波, 王林. 下非均匀信息采集及重构[J]. 吉林大学学报(工学版), 2014, 44(4): 1209-1214.
[9] 姜维, 卢朝阳, 李静, 刘晓佩. 基于角点类别特征和边缘幅值方向梯度直方图统计特征的复杂场景文字定位算法[J]. 吉林大学学报(工学版), 2013, 43(01): 250-255.
[10] 康荣宗, 于宏毅, 田鹏武, 郭虹. 基于压缩感知的自适应干扰抑制算法[J]. , 2012, (06): 1587-1591.
[11] 姚成, 司玉娟, 郎六琪, 朴德慧, 徐海峰, 李贺佳. 基于小波提升的ECG去噪和QRS波识别快速算法[J]. , 2012, 42(04): 1037-1043.
[12] 郭维, 刘光达, 张晓枫, 王春民, 杨宇. 基于多特征参数综合分析脉搏波信号失真度算法的实现[J]. , 2012, 42(04): 1044-1048.
[13] 郝研, 王太勇, 万剑, 张攀, 刘路. 基于经验模式分解和广义维数的机械故障诊断[J]. 吉林大学学报(工学版), 2012, 42(02): 392-396.
[14] 王立国, 王珂, 孙晓颖. 基于MP的近场源方位角、仰角、距离和极化参量联合估计算法[J]. 吉林大学学报(工学版), 2010, 40(03): 842-0847.
[15] 周洁,赵晓晖,林高三 . OFDM系统中一种基于LMMSE的
半盲信道估计算法
[J]. 吉林大学学报(工学版), 2009, 39(02): 508-0513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!