吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1887-1896.doi: 10.13229/j.cnki.jdxbgxb20200568

• 农业工程·仿生工程 • 上一篇    

4QJ⁃3型青贮燕麦捡拾割台的研制

梁荣庆1,2(),钟波2,蒙贺伟1,3,孙志民2,坎杂1,3()   

  1. 1.石河子大学 机械电气工程学院,新疆 石河子 832000
    2.山东省农业机械科学研究院,济南 250100
    3.农业农村部 西北农业装备重点实验室,新疆 石河子 832000
  • 收稿日期:2020-07-27 出版日期:2021-09-01 发布日期:2021-09-16
  • 通讯作者: 坎杂 E-mail:liangrongqing2008@163.com;kz-shz@163.com
  • 作者简介:梁荣庆(1985-),男,工程师,博士.研究方向:现代农业机械装备.E-mail:liangrongqing2008@163.com
  • 基金资助:
    三师肉羊饲养机械化科技特派员创新创业示范项目(2016CA002);国家肉牛牦牛产业技术体系项目(CARS-37)

Design of 4QJ⁃3 type pickup header of silage oat

Rong-qing LIANG1,2(),Bo ZHONG2,He-wei MENG1,3,Zhi-min SUN2,Za KAN1,3()   

  1. 1.College of Mechanical and Electronic Engineering,Shihezi University,Shihezi 832000,China
    2.Shandong Academy of Agricultural Machinery Sciences,Jinan 250100,China
    3.Key Laboratory of Northwest Agricultural Equipment,Ministry of Agriculture and Rural Affairs,Shihezi 832000,China
  • Received:2020-07-27 Online:2021-09-01 Published:2021-09-16
  • Contact: Za KAN E-mail:liangrongqing2008@163.com;kz-shz@163.com

摘要:

为解决刈杀晾晒后燕麦的捡拾收获问题,研究设计了一种具有捡拾、切碎及揉搓等功能的青贮燕麦捡拾割台,并同时开展了田间试验。田间试验表明:样机前进速度为2.7~6.8 km/h时,样机漏捡率为0.6%~1.1%,物料切断长度为20~36 mm,揉搓率均>93%,纯工作小时生产率为0.6~1.49 hm2/h,各性能指标均与设计值吻合较好。试验过程中整机前进速度较高及连续运行时间过长时,存在切碎刀具磨损严重、液压系统过热及零部件损坏等问题,后期需进一步对整机及关键零部件进行优化改进,并对样机进行田间试验,提高整机作业效率及可靠性。

关键词: 农业机械化工程, 燕麦, 捡拾割台, 弹齿滚筒, 夹持喂入, 切碎揉搓

Abstract:

Combined with the present status of silage demand in China and the problems of low mechanization level, poor adaptability and versatility, complicated operation process, high labor intensity as well as high cost in oat gathering, giving full consideration to the application of the silage oat collecting equipment and the status quo of its development, the 4QJ-3 silage oat collecting and cutting header was developed. At the same time, the core components such as the picking and conveying mechanism, the forced feeding mechanism and the structure of chopping and kneading were designed, and the field performance test was carried out. With the combination of the throwing blade of spiral protrusion and kneading board, the material can be kneaded and thrown effectively. The results of field trials showed that the prototype and its components work well. When the tractor's forward speed is 2.7~6.8 km/h, the missing piking rate of the prototype is 0.6%~1.1%, the material cutting length is 20~36 mm, the kneading rate is more than 93%, and the pure working hour productivity is 0.60~1.49 hm2/h. Though all the performance indexes are in good agreement with the design values, but there are still many problems in the prototype when the forward speed is high and the continuous operation time is too long. In the later stage, it is necessary to optimize and improve the machine and key parts, and conduct field test to improve the operation efficiency and reliability of the machine. The development of the prototype can lay a theoretical foundation for the research and development of other types of silage harvester.

Key words: agricultural mechanization engineering, oat, pick-up header, spring roller, gripping feeding, chopping and kneading

中图分类号: 

  • S225.8

图1

4QJ-3型青贮燕麦捡拾割台结构总成图1-弹齿滚筒捡拾装置;2-机架;3-变速箱;4-切碎动刀磨刃机构;5-切碎揉搓装置;6-抛送筒;7-夹持式强制喂入装置;8-限位轮"

表1

4QJ-3型青贮燕麦捡拾割台主要技术参数"

项目数值
配套动力/kW≥100
作业幅宽/mm2200
纯工作时间生产率/(hm2·h-10.5~1.2
工作状态外形尺寸/(m×m×m)6.3×2.64×4.85
切断长度/mm5~50
漏捡率/%≤1
揉搓率/%≥93
喂入量/(kg·s-13
结构质量/kg1650

图2

捡拾输送装置结构图1-弹齿滚筒捡拾机构;2-压草杆;3-螺旋输送机构;4-挡草架;5-外护罩;6-链传动系统;7-中间过渡连接架;8-快速挂接机构;9-单向链轮;10-限深轮"

图3

弹齿滚筒捡拾机构运动分析图"

图4

夹持式强制喂入装置1-左强制喂入辊;2-左压草辊;3-右压草辊;4-右强制喂入辊;5-安全联轴器;6-传动主轴;7-齿轮传动系统"

图5

切碎揉搓装置结构图1-旋转刀盘;2-动刀固定座;3-右螺旋凸起抛送叶片;4-弧面抛送叶片;5-左螺旋凸起抛送叶片;6-传动轴;7-揉搓板调节机构;8-揉搓板;9-切碎动刀"

表2

物料理论切段长度计算表 (mm)"

vwk
234612
38.125.419.112.76.4
50.733.825.416.98.5
67.244.833.622.411.2

图6

抛送装置结构图1-抛送筒;2-抛送位置调整机构;3-抛送距离调节机构;4-推拉锁;5-导流板"

图7

样机及田间试验"

表3

燕麦实际平均切段长度 (mm)"

vwk
234612
37.525.719.516.38.7
50.534.225.817.99.6
67.545.331.622.413.9
1 张越, 王小芬, 代佳丽, 等. 低温燕麦青贮乳酸菌复合菌系的构建及其青贮效果[J]. 农业工程学报, 2019, 35(14): 308-314.
Zhang Yue, Wang Xiao-fen, Dai Jia-li, et al. Construction and effect of lactic acid bacteria in oat silage and mechanism at low temperature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 308-314.
2 Brinton M M, Hansen B H, Ulmer K M, et al. Forage production and calf gains when grazing oats following corn harvest[J]. Translational Animal Science, 2019, 3: 1641-1645.
3 李志强, 冯富. 燕麦青贮研究进展[J]. 西南民族大学学报: 自然科学版, 2018, 44(1): 1-5.
Li Zhi-qiang, Feng Fu. Research progress of oat silage[J]. Journal of Southwest Minzu University(Natural Science Edition), 2018, 44(1): 1-5.
4 Rezende A, Freitas G P, Costa M, et al. Nutritional Composition of White Oat(Avena Sativa L.) with Different Levels of Dry Matter for Use in the Diet of Horses[M].Wageningen: Wageningen Academic Publishers, 2012.
5 Andrés B M V, Felipe L G, Gertrudis E, et al. Oat silage for grazing dairy cows in small-scale dairy systems in the highlands of central Mexico[J]. African Journal of Range and Forage Science, 2018, 35(1): 63-70.
6 Shinners K J, Boettcher G C, Muck R E, et al. Harvest and storage of two perennial grasses as biomass feedstocks[J]. Transactions of the Asabe, 2010, 53(2): 359-370.
7 Odogherty M J. A review of research on forage chopping[J]. Journal of Agricultural Engineering Research, 1982, 27(4): 267-289.
8 Siahsar B, Taleei A, Peyghambari A, et al. QTL analysis of forage quantity and quality-related traits of barley[J]. Journal of Crop Production and Processing Isfahan University of Technology, 2009, 13(47): 195-208.
9 Blevins F Z, Hansen H J. Analysis of forage harvester design[J]. Agricultural Engineering, 1956, 37: 21-27, 29.
10 Johnson L M, Harrison J H, Hunt C W, et al. Nutritive value of corn silage as affected by maturity and mechanical processing: a contemporary review[J]. Journal of Dairy Science, 1999, 82(12): 2813-2825.
11 Zhang M, Sword M L, Buckmaster D R, et al. Design and evaluation of a corn silage harvester using shredding and flail cutting[J]. Transactions of the Asabe, 2003, 46(6): 1503-1511.
12 Amiama C, Bueno J, Alvarez C J, et al. Design and field test of an automatic data acquisition system in a self-propelled forage harvester[J]. Computers and Electronics in Agriculture, 2008, 61(2): 192-200.
13 Cerdeira-Pena A, Carpente L, Amiama C. Optimised forage harvester routes as solutions to a traveling salesman problem with clusters and time windows[J]. Biosystems Engineering, 2017, 164: 110-123.
14 Reyns P, Missotten B, Ramon H, et al. A review of combine sensors for precision farming[J]. Precision Agriculture, 2002, 3(2): 169-182.
15 Mathanker S K, Hansen A C. Harvesting system design and performance[J]. Engineering and Science of Biomass Feedstock Production and Provision, 2014(1): 85-139.
16 Bortolini M, Cascini A, Gamberi M, et al. Sustainable design and life cycle assessment of an innovative multi-functional haymaking agricultural machinery[J]. Journal of Cleaner Production, 2014, 82(1): 23-36.
17 万霖, 车刚, 汪春, 等. 4QZR-30型青贮饲料收获机设计与试验[J]. 农业机械学报, 2008, 39(3): 187-190.
Wan Lin, Che Gang, Wang Chun, et al. Design and test of 4QZR-30 silage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(3): 187-190.
18 丛宏斌, 李明利, 李汝莘, 等. 4YQK-2型茎秆青贮打捆玉米收获机的设计[J]. 农业工程学报, 2009, 25(10): 96-100.
Cong Hong-bin, Li Ming-li, Li Ru-xin, et al. Design of 4YQK-2 combine harvester for corn and straw ensilage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10): 96-100.
19 赵满全, 黄炎. 黄贮饲料收获机关键部件设计与性能试验[J]. 农业机械学报, 2013, 44(): 91-95.
Zhao Man-quan, Huang Yan. Structure simulation and performance experiment of yellow corn forage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Sup.2): 91-95.
20 王进华, 王泽群, 贾晶霞, 等. 饲料收获机矮秆割台拨禾轮导轨运动轨迹研究[J]. 农业机械学报, 2011, 42(): 152-155.
Wang Jin-hua, Wang Ze-qun, Jia Jing-xia, et al. Guide rail trajectory of mower table reel device for silage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Sup.1): 152-155.
21 郁志宏, 王文明, 莫日根毕力格, 等. 弹齿滚筒式捡拾器捡拾性能试验[J]. 农业机械学报, 2017, 48(3): 106-112.
Yu Zhi-hong, Wang Wen-ming, Morigenbilige, et al. Experiment on performance of spring-finger cylinder pickup collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 106-112.
22 王文明, 王春光. 弹齿滚筒式捡拾装置参数分析与仿真[J]. 农业机械学报, 2012, 43(10): 82-88.
Wang Wen-ming, Wang Chun-guang. Parameter analysis and simulation of spring-finger cylinder pickup collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 82-88.
23 王国权, 余群, 卜云龙, 等. 秸秆捡拾打捆机设计及捡拾器的动力学仿真[J]. 农业机械学报, 2001, 32(5): 59-61, 68.
Wang Guo-quan, Yu Qun, Bu Yun-Long, et al. Design of pickup baler and dynamic simulation of pickup roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(5): 59-61, 68.
24 Langer T H, Ebbesen M K, Kordestani A. Experimental analysis of occupational whole-body vibration exposure of agricultural tractor with large square baler[J]. International Journal of Industrial Ergonomics, 2015, 47: 79-83.
25 Cundiff J S, Marsh L S. Harvest and storage costs for bales of switchgrass in the southeastern United States[J]. Bioresource Technology, 1996, 56(1): 95-101.
26 盛凯, 曾南宏. 弹齿滚筒捡拾器的机构特性及其运动数学模型[J]. 农业机械学报, 1991, 22(1): 51-57.
Sheng Kai, Zeng Nan-hong. Mechanism characteristics and movement mathematical model of the spring-toothed roller picker[J]. Transactions of the Chinese Society for Agricultural Machinery, 1991, 22(1): 51-57.
27 卡那沃依斯基. 收获机械[M]. 北京: 中国农业机械出版社, 1983.
28 车刚, 万霖, 张伟, 等. 青贮饲料收获机实体设计与试验[J]. 农业机械学报, 2010, 41(2): 82-86.
Che Gang, Wan Lin, Zhang Wei, et al. Solid design and experiment of forage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(2): 82-86.
29 周德义, 王子佳, 张丹丹, 等. 新型玉米收获机的秸秆处理装置[J]. 吉林大学学报: 工学版, 2012, 42(): 113-116.
Zhou De-yi, Wang Zi-jia, Zhang Dan-dan, et al. The new device of stalk cutting with in corn narvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(Sup.1): 113-116.
30 Weiss W P, Wyatt D J. Effect of oil content and kernel processing of corn silage on digestibility and milk production by dairy cows[J]. Journal of Dairy Science, 2000, 83(2): 351-358.
31 Bhandari S K, Li S, Ominski K H, et al. Effects of the chop lengths of alfalfa silage and oat silage on feed intake, milk production, feeding behavior, and rumen fermentation of dairy cows[J]. Journal of Dairy Science, 2008, 91(5): 1942-1958.
32 薛钊, 付君, 陈志, 等. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 739-748.
Xue Zhao, Fu Jun, Chen Zhi, et al. Optimization experiment on parameters of chopping device of forage maize harvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
33 邱进, 吴明亮, 官春云, 等. 动定刀同轴水稻秸秆切碎还田装置结构设计与试验[J]. 农业工程学报, 2015(10): 10-19.
Qiu Jin, Wu Ming-liang, Guan Chun-yun, et al. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(10): 10-19.
34 Siemens M C, Wilkins D E, Correa R F. Development and evaluation of a residue management wheel for hoe-type no-till drills[J].Transactions of the American Society of Agricultural Engineers, 2004, 47(2): 397-404.
35 Kroes S, Harris H D. A kinematic model of the dual basecutter of a sugar cane harvester[J]. Journal of Agricultural Engineering Research, 1995, 62(3): 163-172.
36 梁荣庆, 张翠英, 李青江, 等. 4QG-2型青贮收获机切碎揉搓装置的设计[J]. 农机化研究, 2018, 40(11): 99-104.
Liang Rong-qing, Zhang Cui-ying, Li Qing-jiang, et al. Design of chopping and rubbing device of 4QG-2 silage harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(11): 99-104.
37 . 玉米青贮收获机作业质量[S].
38 . 牧草捡拾器[S].
[1] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
[2] 付君,张屹晨,程超,陈志,唐心龙,任露泉. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
[3] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[4] 程超,付君,郝付平,陈志,周德义,任露泉. 清选筛运动参数对玉米芯轴堵筛规律的影响[J]. 吉林大学学报(工学版), 2020, 50(1): 351-360.
[5] 程超,付君,唐心龙,陈志,任露泉. 振动形式对水稻脱出物界面粘附规律的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1228-1235.
[6] 付君,钱志辉,尹维,王甲甲,任露泉. 小麦摩擦与拉伸性能[J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!