吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 497-503.doi: 10.13229/j.cnki.jdxbgxb20200800

• 车辆工程·机械工程 •    

基于触月压痕的表层月壤力学状态试验分析

薛龙1(),姚猛2,李立犇3,李因武3,邓湘金2,李建桥3,邹猛3()   

  1. 1.江西农业大学 江西省现代农业装备重点实验室,南昌 330045
    2.中国空间技术研究院 北京空间飞行器总体设计部,北京 100094
    3.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2020-10-19 出版日期:2022-03-01 发布日期:2022-03-08
  • 通讯作者: 邹猛 E-mail:ultimata@163.com;zoumeng@jlu.edu.cn
  • 作者简介:薛龙(1977-),男,副教授,博士. 研究方向:车辆地面力学及农业机械化. E-mail:ultimata@163.com
  • 基金资助:
    国家自然科学基金项目(51865018);中国空间技术研究院预研项目(5010120160759);江西省自然科学基金项目(20192BAB206025)

Experimental analysis of mechanical properties of surface lunar soil based on lunar indentation

Long XUE1(),Meng YAO2,Li-ben LI3,Yin-wu LI3,Xiang-jin DENG2,Jian-qiao LI3,Meng ZOU3()   

  1. 1.Key Lab of Modern Agricultural Equipment,Jiangxi Agricultural University,Nanchang 330045,China
    2.Beijing Institute of Spacecraft System Engineering,China Academy of Space Technology,Beijing 100094,China
    3.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2020-10-19 Online:2022-03-01 Published:2022-03-08
  • Contact: Meng ZOU E-mail:ultimata@163.com;zoumeng@jlu.edu.cn

摘要:

以触月传感器触月压痕为研究对象,通过压痕的几何特征参数和触月压力,结合最小二乘法建立了采样区域表层月壤的承压模型,确定了表层月壤的软硬程度。应用3种模拟月壤(CE5_1、CE5_2、CE5_3),以相对密实度为依据,把模拟月壤整备为松软、中密和高密3种状态。共采集试验数据264组,每种模拟月壤的试验数据按照3∶2的比例随机划分为建模组和预测组。预测组中预测正应力与实际正应力的相关系数分别为0.985、0.965和0.971。结果表明,该模型可以对表层月壤的承压能力进行评估,用于判别表层月壤的软硬程度,为表取采样深度的确定提供参考。

关键词: 地面力学, 表取采样, 月壤, 承压特性

Abstract:

Based on the indentation, geometric parameters (surface area and depth) obtained by stereo camera were used to identify pressure-sinkage model coefficient combined with least square method. Three kinds of lunar soil simulant (CE5_1, CE5_2 and CE5_3) were used in these studies and each kind of simulant was prepared based on bulk density for three states (soft, normal and hard). There were 264 data including 96 data of CE5_1, 36 data of CE5_2 and 36 data of CE5_3. The data of each kinds of simulant was randomized in two data set according to the ratio of 3∶2, one was calibration data set, the other was prediction data set. Based on the pressure-sinkage model coefficient obtained by calibration data set, the accuracy of prediction data set of CE5_1, CE5_2 and CE5_3 were 0.985, 0.965 and 0.971, respectively. The results show that this pressure-sinkage model can be used to provide numerical reference to determine the extent of soft and hard lunar surface which can provide reference for excavation depth of lunar regolith sampler.

Key words: terramechanics, regolith sampling, lunar soil, pressure sinkage

中图分类号: 

  • TB17

表1

模拟月壤相对密度和孔隙比"

模拟月壤状态相对密度/%孔隙比
松软301.45
中密501.16
密实700.94

图1

CE5系列模拟月壤粒径分布曲线"

图2

试验设备"

图3

触月传感器模拟件"

图4

触月传感器触月过程"

图5

压痕的形态"

图6

压痕的几何模型"

表2

试验数据统计"

模拟月壤类型建模组预测组合计
CE5_19648144
CE5_2362460
CE5_3362460

图7

CE5_1模拟月壤的拟合结果"

图8

CE5_2挑战模拟月壤的拟合结果"

图9

CE5_3极端模拟月壤的拟合结果"

表3

应用最小二乘法求解承压力学模型结果"

模拟月壤类型模型预测组RRMSE
CE5_1p=1.42z-0.50480.9850.038
CE5_2p=1.47z-0.55240.9650.076
CE5_3p=1.49z-0.55240.9710.042

图10

承压模型曲线"

图11

试验场试验图像"

表4

根据承压模型计算对应深度的正应力"

图像深度/cm正应力/(N?cm-2
CE5_1CE5_2CE5_3
图11(a)7.03691.69281.78341.8077
图11(b)3.67642.34192.54882.5835
1 郑燕红, 邓湘金, 庞勇, 等. 月球风化层钻取采样过程密实度分类研究[J]. 航空学报, 2020, 41(4):No.223391.
Zheng Yan-hong, Deng Xiang-jin, Peng Yong, et al. Research on classification of relative density in lunar regolith drilling[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):No.223391.
2 姚猛,郑燕红,赵志晖,等. 一种月表采样器合理铲挖深度的研究[J]. 航天器工程, 2017, 26(3):50-56.
Yao Meng, Zheng Yan-hong, Zhao Zhi-hui, et al. Research on reasonable excavation depth for lunar regolith sampler[J]. Spacecraft Engineering, 2017, 26(3):50-56.
3 姜水清,刘荣凯,林云成,等. 铲挖式表层月壤采样器设计与试验[J]. 中国空间科学技术, 2019, 39(1):49-58.
Jiang Shui-qing, Liu Rong-kai, Lin Yun-cheng,et al. Design and test of a sampler for lunar surface regolith[J]. Chinese Space Science and Technology, 2019, 39(1):49-58.
4 Shaw A, Arvidson R E, Bonitz R, et al. Phoenix soil physical properties investigation[J]. Journal of Geophysical Research: Planets, 2009, 114(E1):No.E00E05.
5 Tsuchiya K, Ishigami G. Vision-based measurement of spatio-temporal deformation of excavated soil for the estimation of bucket resistive force[J]. Journal of Terramechanics, 2020, 90:11-21.
6 Jiang Xiao-hu, Tong Jin, Ma Yun-hai, et al. Development and verification of a mathematical model for the specific resistance of a curved subsoiler[J]. Biosystems Engineering, 2020, 190:107-119.
7 Malaguti F. Soil machine interaction in digging and earthmoving automation[C]∥Proceedings of the 11th ISARC, Brighton, United Kingdom, 1994:187-191.
8 Blouin S, Hemami A, Lipsett M. Review of resistive force models for earthmoving processes[J]. Journal of Aerospace Engineering, 2001, 14(3):102-111.
9 Swick W C, Perumpral J V. A model for predicting soil-tool interaction[J]. Journal of Terramechanics, 1988, 25(1):43-56.
10 Xi Bang-lu, Jiang Ming-jing, Cui Liang, et al. Experimental verification on analytical models of lunar excavation[J]. Journal of Terramechanics, 2019, 83:1-13.
11 Yang Qin-sen, Sun Shu-ren. A soil-tool interaction model for bulldozer blades[J]. Journal of Terramechanics,1994,31(2):55-65.
12 Luth H J, Wismer R D. Performance of plane soil cutting blades in sand[J]. Transactions of the ASAE, 1971, 14(2):255-259.
13 薛龙, 邹猛, 李建桥,等. 基于轮地作用参数和PLSDA方法的月壤力学性能评估[J]. 航空学报, 2015, 36(11):3751-3758.
Xue Long, Zou Meng, Li Jian-qiao, et al. Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3751-3758.
14 郑燕红, 姚猛, 金晟毅,等. 月面复杂地形表层采样可采点确定方法[J]. 中国空间科学技术,2019,39(2):41-48.
Zheng Yan-hong, Yao Meng, Jin Sheng-yi, et al. Lunar surface sampling point selection for uneven terrain[J]. Chinese Space Science and Technology, 2019, 39(2):41-48.
15 郑燕红, 邓湘金, 彭兢,等. 基于人工势场法的月球表层采样装置避障规划[J]. 中国空间科学技术. 2015(6):66-74.
Zheng Yan-hong, Deng Xiang-jin, Peng Jing,et al. Lunar surface sampling device collision avoidance planning based on artificial potential field methon[J]. Chinese Space Science and Technology, 2015(6):66-74.
16 王康,姚猛,李立犇,等. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报:工学版,2021,51(3):1146-1152.
Wang Kang, Yao Meng, Li Li-ben, et al. Mechanical performance identification for lunar soil in lunar surface sampling[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3):1146-1152.
17 王康, 张沛, 林云成,等. 采样机械臂关节月表环境适应性设计[J]. 航天器环境工程, 2017, 34(5):482-489.
Wang Kang, Zhang Pei, Lin Yun-cheng, et al. Environmental adaptive design of joint for a lunar surface sampling arm[J]. Spacecraft Environment Engineering, 2017, 34(5):482-489.
[1] 王康,姚猛,李立犇,李建桥,邓湘金,邹猛,薛龙. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152.
[2] 黄晗, 李建桥, 陈百超, 吴宝广, 邹猛. 着陆器足垫冲击特性模型试验[J]. 吉林大学学报(工学版), 2017, 47(4): 1194-1200.
[3] 崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元. 真空颗粒系统有效导热系数测量试验台研制及试验[J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[4] 李建桥,黄晗,党兆龙,邹猛,王洋. 轻载荷条件下的筛网轮沉陷[J]. 吉林大学学报(工学版), 2015, 45(1): 167-173.
[5] 邹猛,李建桥,张金换,刘国敏,李因武. 月球车驱动轮在不同介质上的牵引性能[J]. 吉林大学学报(工学版), 2010, 40(01): 25-0029.
[6] 张朋,邓宗全,胡明,高海波. 基于地面力学的变质心月球探测车移动性能[J]. 吉林大学学报(工学版), 2009, 39(06): 1573-1578.
[7] 邹猛,李建桥,贾阳,任露泉,李因武 . 月壤静力学特性的离散元模拟[J]. 吉林大学学报(工学版), 2008, 38(02): 383-0387.
[8] 李雯,高峰,孙鹏. 复合材料深空探测车车轮的设计[J]. 吉林大学学报(工学版), 2006, 36(04): 502-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!