吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1488-1497.doi: 10.7964/jdxbgxb201405042

• • 上一篇    下一篇

针对M2M业务的IEEE 802.11优化及其性能评价

迟学芬, 马丽君, 王雅辉, 石文孝   

  1. 吉林大学 通信工程学院,长春 130012
  • 收稿日期:2013-06-27 出版日期:2014-09-01 发布日期:2014-09-01
  • 作者简介:迟学芬(1962), 女, 教授, 博士生导师.研究方向:宽带无线IP网络的理论和技术, 网络建模.E-mail:chixf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61071074); 吉林省科技发展计划项目(20130413052GH).

IEEE 802.11 optimization and performance evaluation for M2M services

CHI Xue-fen,MA Li-jun,WANG Ya-hui,SHI Wen-xiao   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2013-06-27 Online:2014-09-01 Published:2014-09-01

摘要: 为降低IEEE 802.11接入过程中误码引起的竞争失败率,提出一种无退避、快速重传算法,推导了MAC层服务时间概率分布,建立了IBP/Gw/1/K离散时间排队系统,研究了非饱和负载下M2M业务在802.11非理想信道下的传输性能。为了提高海量M2M终端在802.11网络中的接入效率,提出一种动态调整窗口的算法。为模拟802.11接入和IP承载网络传输M2M业务的通信场景,基于串联排队理论,建立了多节点串联排队网络模型,并求解了M2M业务的端到端性能指标。仿真表明:两种改进算法有效提高了802.11的服务效率;异质业务接入802.11网络的场景中,突发度小的M2M业务能获得更好的QoS。

关键词: 通信技术, 服务质量, 串联排队理论, 离去过程

Abstract: To reduce the probability of access failure caused by channel error, an algorithm featured by no backoff and fast retransmission was proposed for the access procedure of IEEE 802.11. The probability distribution of Medium Access Control (MAC) layer service was derived, and IBP/Gw/1/K discrete-time queuing model was established to analyze the QoS performance of M2M under unsaturated traffic condition and imperfect channel in the IEEE 802.11. To improve the transmission efficiency of massive M2M services, a dynamic window adjustment algorithm was put forward. Based on the tandem queuing network theory, a tandem queuing model was established to depict the real communication scenario, which was made up of wireless access network and IP core network. System end-to-end performance indicators were derived from M2M services. Simulation results indicate that the proposed algorithm can effectively improve the service efficiency of IEEE 802.11. The M2M services with low degree of burst canget better QoS when heterogeneous M2M services coexist in the network.

Key words: communication technology, quality of service, tandem queuing theory, departure process

中图分类号: 

  • TN925
[1] Bianchi G. Performance analysis of IEEE 802.11 distributed coordination function[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535-547.
[2] Krzysztof S, Jozef L. Performance analysis of IEEE 802.11 DCF networks[J]. Journal of Zhejiang University Science A, 2008, 9(10): 1309-1317.
[3] Ali B, Ali M. The novel contention window control scheme for IEEE 802.11 MAC protocol[C]∥The 2th International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan,China,2010: 134-137.
[4] Hung F Y, Ivan M. Performance analysis of the IEEE 802.11 DCF in the presence of the hidden stations[J]. Computer Networks, 2010, 54 (15): 2674-2687.
[5] 王雅辉,迟学芬. M2M小数据业务的IEEE 802.11 WLAN分析模型[J]. 通信学报,2011,32(12):122-130.Wang Ya-hui, Chi Xue-fen. IEEE 802.11 WLAN analytical model for M2M small data service[J]. Journal on Communications, 2011, 32(12): 122-130.
[6] 高峰,高泽华,文柳,等. IEEE 802.11a DCF协议吞吐量与时延性能分析[J]. 北京邮电大学学报,2010,33(6):43-47.Gao Feng, Gao Ze-hua, Wen Liu, et al. Performance analysis of WLAN based on IEEE 802.11a[J]. Journal of Beijing University of Posts and Telecommunications, 2010,33(6):43-47.
[7] Prakash G, Thangaraj P. Throughput analysis of IEEE 802.11b WLAN under a non-saturated condition[C]∥International Conference and Workshop on Emerging Trends in Technology, Kochi,2010: 298-303.
[8] Senthilkumar D, Krishnan A. Enhancement to IEEE 802.11 distributed coordination function to reduce packet retransmissions under imperfect channel conditions[J]. Wireless Personal Communications, 2012, 65(4) :929-953.
[9] Elena L A, Jordi C, Eduard G V. A study on the influence of transmission errors on IEEE 802.11 IEEE 802.11 MAC performance[J]. Wireless Communications and Mobile Computing, 2011, 11(10): 1376-1391.
[10] Zhu Yi-hua, Xu Hui, Chi Kai-kai, et al. Accumulating error-free frame blocks to improve throughput for IEEE 802.11-based WLAN[J]. Journal of Network and Computer Applications, 2012, 35(2): 743-752.
[11] 杨卫东,李亚辉,马建峰.衰落信道中802.11 DCF的非饱和吞吐量分析[J]. 吉林大学学报:工学版,2008,38(3):695-699.Yang Wei-dong, Li Ya-hui, Ma Jian-feng. Non-saturation throughput analysis of 802.11 DCF in fading channel[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(3): 695-699.
[12] Dooyeong P, Harry G P. Approximate analysis of discrete-time tandem queuing networks with customer loss[C]∥In Proc IEEE GLOBE-COM'92, Orlando, Florida, 1992: 1503-1507.
[13] Ferng Huei-Wen, Chang Jin-Fu.The departure process of discrete-time queuing systems with Markov type inputs[J]. Queuing System, 2000, 36(1-3): 201-220.
[14] 赵莹莹. 基于串联排队网理论的通信网络建模与性能分析[D].长春:吉林大学通信工程学院,2010.Zhao Ying-ying. Communication network modeling and performance analysis based on tandem queuing network theory[D]. Changchun: College of Communication Engineering, Jilin University, 2010.
[15] Krishnan M N, Pollin S, Zakhor A. Local estimation of probabilities of direct and staggered collisions in 802.11 WLAN[C]∥GLOBECOM-IEEE Global Telecommunications Conference, Honolulu,2009.
[16] 王雅辉.IEEE 802.11 IEEE 802.11中M2M业务服务质量的研究[D].长春:吉林大学通信工程学院,2010.Wang Ya-hui. Research on quality of service of M2M in IEEE 802.11 WLAN[D]. Changchun: College of Communication Engineering, Jilin University, 2010.
[17] Christoph H. Complete analysis of the discrete time finite DBMAP/G/1/N queue[J]. Performance Evaluation, 2001, 43(2/3): 95-121.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!