›› 2012, Vol. ›› Issue (03): 665-671.

• 论文 • 上一篇    下一篇

工艺参数对高光注射成型制品翘曲的宏观影响

刘东雷1,2, 申长雨1, 刘春太1, 辛勇2, 孙玲2   

  1. 1. 郑州大学 国家橡塑模具工程研究中心, 郑州450002;
    2. 南昌大学 机电工程学院, 南昌330031
  • 收稿日期:2011-03-02 出版日期:2012-05-01
  • 基金资助:
    国家自然科学基金项目(11172271);河南省重大科技专项项目.

Macro-effect of process parameter on waspage of rapid heat cycle molding plastic part

LIU Dong-lei1,2, SHEN Chang-yu1, LIU Chun-tai1, XIN Yong2, SUN Ling2   

  1. 1. National Engineering Research Center for Application Plastic Processing Technology, Zhengzhou University, Zhengzhou 450002, China;
    2. College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
  • Received:2011-03-02 Online:2012-05-01

摘要: 以线性、小变形、热弹模型Duhamel-Neumann方程为基础,研究了温度因素对高光(无痕)注射成型(Rapid heat cycle molding,RHCM)制品残余应力的影响。开发了车载高光蓝牙模具和温控辅助装置,研究了工艺参数对RHCM制品翘曲的宏观影响。结果表明:RHCM成型模温设定应该有上限值,在相同的模温下各参数在可行范围内设定条件下,对制品翘曲的影响由大至小依次为:保压时间、保压压力、熔体温度、注射压力、冷却时间。随着模温逐步升高,制品翘曲呈准线性减小趋势,且随着熔体温度和注射压力的升高而小幅度减小,随着保压压力的升高、保压时间和冷却时间的延长而小幅度"V"型波动,且均在塑料热变形温度附近达到极小值。

关键词: 材料合成与加工工艺, 高光注射成型, 工艺参数, 翘曲变形

Abstract: Based on the linear infinitesimal deformation thermoelasticity model Duhamel-Neumann equation, the effects of temperature factors on the residual stress of plastic parts manufactured by the rapid heat cycle molding(RHCM) were studied. An on-board blue-tooth pront shell mold and a set of accurate temperature control device were developed, and the effect of mold temperature in RHCM on warpage of the part was investigated. The results showed that the mold temperature should be under an upper limit. Under the same mold temperature, for the parameters set in the feasible range, their effects on the warpage of RHCM part decrease according the the following order: pressure keeping time, pressure keeping value, meet temperature, injection pressure, and cooling time. With the increase of mold temperature, part warpage decreases quasi-linearly. The warpage shows a modest decrease with the increase of meet temperature and injection pressure, and demonstrates a small V shape fluctuation with the increase of pressure keeping value, pressure keeping time and cooling time.

Key words: material synthesis and processing technology, rapid heat cycle molding(RHCM), processing parameter, warpage

中图分类号: 

  • TQ320.66
[1] Wang Gui-long, Zhao guo-qun, Li Hui-ping, et al. Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process[J]. Materials & Design,2010,31:3426-3441.
[2] Kim D H, Kang M H, Chun Y H. Development of a new injection molding technology: momentary mold surface heating process[J]. Journal of Injection Molding Technology,2001,5(4):229-232.
[3] Yao D, Kim B. Development of rapid heating and cooling systems for injection molding applications[J]. Polymer Engineering & Science,2002,42(12):2471-2481.
[4] Chen S C, Jong W R, Chang J A. Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line[J]. Journal of Applied Polymer Science, 2006,101(2):1174-1180.
[5] Chang P C, Hwang S J. Experimental investigation of infrared rapid surface heating for injection molding[J]. J Appl Polym Sci,2006,102(4):3704-3713.
[6] Chang P C, Hwang S J. Simulation of infrared rapid surface heating for injection molding[J]. Int J Heat Mass Transfer,2006, 49(21/22):3846-3854.
[7] Piotter V, Mueller K, Plewa K, et al. Performance and simulation of thermoplastic micro injection molding[J]. Microsystem Technology,2002,8(6):387-390.
[8] Su Y C, Shan J, Ian I W. Implementation and analysis of polymeric microstructure replication by micro injection molding[J]. Micromesh Microeng,2004,14(3):415-422.
[9] Yu M C, Young W B, Hsu P M. Micro-injection molding with the infrared assisted mold heating system[J]. Material Science & Engineering A,2007,460-461(15):288-295.
[10] Shen Y K, Shie Y J, Wu W Y. Extension method and numerical simulation of micro-injection molding[J]. Int Comm Heat Mass Transfer,2004,31(6):795-804.
[11] Liao S J, Chang D Y, Chen H J, et al. Optimal process conditions of shrinkage and warpage of thin-wall parts[J]. Polym Eng Sci,2004,44(5):917-928.
[12] Huang M C, Tai C C. The effective factors in the warpage problem of an injection molded part with a thin shell feature[J]. J Mater Proc Technol,2001,110(1):1-9.
[13] Shen Y K, Yeh P H, Wu J S. Numerical simulation for thin wall injection molding of fiber-reinforced thermoplastics[J]. Int Commun Heat Mass Transfer, 2001,28(8):1035-1042.
[14] Shen Y K, Liu J J, Chang C T, et al. Comparison of the results for semisolid and plastic injection molding process[J]. Int Commun Heat Mass Transfer,2002,29(1):97-105.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[3] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[5] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[7] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[8] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[9] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[10] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[11] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[12] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[13] 谷晓燕, 刘亚俊, 孙大千, 徐锋, 孟令山, 高帅. S355钢/6005A铝合金瞬间液相扩散连接接头组织与性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[14] 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[15] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!