吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (03): 836-840.doi: 10.7964/jdxbgxb201303046

• 论文 • 上一篇    下一篇

基于3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole(TAZ)制备的薄膜电阻的磁效应

姜文龙, 贾萍, 汪津, 丁桂英   

  1. 吉林师范大学 信息技术学院, 吉林 四平 136000
  • 收稿日期:2012-03-12 出版日期:2013-05-01 发布日期:2013-05-01
  • 作者简介:姜文龙(1963-), 男, 教授.研究方向:有机电致发光器件.E-mail:jiang_wl@163. com
  • 基金资助:

    国家自然科学基金项目(10804036);吉林省科技发展计划项目(20080528,20082112, 20100510,20101512,201215221);吉林省教育厅"十二五"科研计划项目 ( [2011]第154号,[2012]第175号,[2012]第176号);吉林师范大学研究生创新计划项目(201113).

Magnetic field effects of film resistance based on 3-(4-Biphenylyl)-4-phenlyl-5-tert-butyl-phenyl-1,2,4-triazole

JIANG Wen-long, JIA Ping, WANG Jin, DING Gui-ying   

  1. College of Information Technology,Jilin Normal University, Siping 136000,China
  • Received:2012-03-12 Online:2013-05-01 Published:2013-05-01

摘要: 讨论了采用热蒸镀方法制备的结构为ITO/β-NPB(55-x nm)/Alq3(45 nm)/TAZ(x nm)/LiF(0.5 nm)/Al的器件的磁效应.在室温下研究了x分别取0、5、10、15 nm时器件的电阻率与磁场之间的变化关系.结果表明,x=0 nm时,在10 V电压下,电阻率变化率Δρ/ρ随磁场强度的增大而增大;当磁场强度B=110 mT时,Δρ/ρ达到最大,仅为8.22%.当x分别取5、10、15 nm时,Δρ/ρ为随磁场的增大而减小;在相同磁场强度下,x越大,Δρ/ρ越大;当B=110 mT,x=15 nm,电压为10 V时,Δρ/ρ的数值达到最大,为-16.92%.

关键词: 半导体技术, 电阻率变化率, 电流变化率, 电阻磁敏效应

Abstract: Magnetoresistance measurement of indium tin oxide/N, N'-Bis(naphthalen-2-yl)-N,N'-bis(phenyl)-benzidine(NPB)/ Tris(8-hydroxy-quinolinato) aluminum(Alq3)/3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole(TAZ)/LiF/aluminum OLED structures have been made as a function of magnetic field at room temperature. The MR is defined as MR=Δρ/ρ=[ρ(B)-ρ(0)] /ρ(0). It has been found that that the Δρ/ρ increases with increasing magnetic field strength from 0 mT to 110 mT with TAZ thickness of 0 nm at 10 V, which maximal value is 8.22% at about 110 mT. The external magnetic filed can decrease the Δρ/ρ in devices with TAZ thickness from 5 nm to 15 nm. This is because the magnetic field can reduce the singlet polaron pairs converted into triplet polaron pairs due to Zeeman splitting and can lead to an increase in singlet polarons and a decrease in triplet polarons. Furthermore, the Δρ/ρ increases while TAZ thickness is increasing at same magnetic filed strength. When an external magnetic field is 110 mT, the Δρ/ρ is found to increase by up to -16.92% with TAZ thickness of 15 nm at 10 V.

Key words: semiconductor technology, resistance change rate, current change rate, resistance magnetic sensitized effect

中图分类号: 

  • TN383.1
[1] Kalinowski J, Cocchi M, Virgili D, et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes[J].Chem Phys Lett, 2003, 380 (5/6): 710-715.

[2] Veeraraghavan G, Nguyen T D, Sheng Y, et al. Magnetic field effects on current, electroluminescence and photocurrent in organic light-emitting diodes[J]. J Phys-condens Mat, 2007, 19 (3): 6209-6221.

[3] Dediu V A, Hueso L E, Bergenti I, et al. Spin routes in organic semiconductors[J].Nature Materials, 2009, 8 (9): 707-716.

[4] Dediu V, Hueso L E, Bergenti I, et al. Room-temperature spintronic effects in Alq3-based hybrid devices[J]. Phys Rev B, 2008, 78 (11): 5203.

[5] Gómez J A,Nüesch F,Zuppiroli L,et al. Magnetic field effects on the conductivity of organic bipolar and unipolar devices at room temperature[J]. Synth Met,2010,160(3/4): 317-319.

[6] Lei Yan-lian, Zhang Yong, Liu Rong, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode[J]. Organ Electron, 2009, 10(5): 889-894.

[7] Niedermeier U, Bagnich S A, Melzer C, et al. Tuning of organic magnetoresistance by reversible modification of the active material[J]. Synth Met, 2010, 160(3):251-255.

[8] Park J K, Kwon O, Choi E Y, et al. Enhanced electrical conductivity of polyaniline film by a low magnetic field[J]. Synth Met, 2010, 160(7/8): 728-731.

[9] Lei Yan-lian, Song Qun-liang, Chen Ping,et al. Large contribution of triplet excitons to electro- fluorescence in small molecular organic light-emitting diodes[J]. Organ Electron, 2011, 12(9): 1512-1517.

[10] Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurement of Alq3-based OLEDs[J]. Phys Rev B, 2007, 75(9): 4423-4427.

[11] Bergeson J D, Prigodin V N, Lincoln D M, et al. Inversion of magnetoresistance in organic semiconductor[J]. Phys Rev Lett, 2008, 100(6): 7201-7204.

[12] Nguyen T D, Sheng Y, Wohlgenannt M, et al. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices[J]. Phys Rev B, 2008, 77(23): 5209-5214.

[13] Hu B, Yan L, Shao M. Magnetic field effect in organic semiconducting materials and devices[J]. Adv Mater, 2009, 21(14/15): 1500-1516.

[14] 汪津,丁桂英,姜文龙,等. 磁场作用下的有机电致发光[J]. 物理学报, 2009, 58(10): 7206-7277. Wang Jin,Ding Gui-ying, Jiang Wen-long, et al. Effects of magnetic field on organic electroluminescence[J]. Acta Phys Sin, 2009, 58(10): 7206-7277.

[15] 姜文龙,丛林,孟昭辉,等. 室温下磁场对基于Alq3的有机电致发光器件的影响[J]. 物理学报,2010, 59(5): 645-650. Jiang Wen-long,Cong Lin,Meng Zhao-hui,et al. The role of magnetic fields on organic light-emitting divices based on aluminum tris(8-hydroxyquinoline) Alq3 at room temperature[J]. Acta Phys Sin, 2010,59(5): 645-650.

[16] 姜文龙,孟昭辉,丛林,等. 双量子阱结构OLED效率和电流的磁效应[J]. 物理学报, 2010, 59(9): 6642-6646. Jiang Wen-long, Meng Zhao-hui,Cong Lin, et al. The role of magnetic fields on the efficiency of OLED of double quantum well structures[J]. Acta Phys Sin, 2010, 59(9): 6642-6646.

[17] 姜文龙,孟凡超,丛林,等. 基于BAlq的有机电致发光器件的磁效应[J]. 光电子·激光,2011,22(1): 5-8. Jiang Wen-long, Meng Fan-chao,Cong Lin, et al. Magnetic field effect in organic light emitting diodes based on BAlq[J]. Journal of Optoelectronics·Laser, 2011,22(1) :5-8.

[18] Prigodin V N, Bergeson J D, Lincoln D M, et al. Anomalous room temperature magnetoresistance in organic semiconductor[J]. Synth Met, 2006, 156(9-10): 757-761.

[19] Ern V, Merrifield R E. Magnetic field effect on triplet exciton quenching in organic crystals[J]. Phys Rev Lett, 1968, 21(9): 609-611.

[20] Ito F, Ikoma T, Akiyama K, et al. Carrier generation process on photoconductive polymer films as studied by magnetic field effects on the charge-transfer fluorescence and photocurrent[J]. J Phys Chem, 2005, 109(18): 8707-8717.

[21] 刘荣,雷衍连,张勇,等. 有机发光器件中的塞曼分裂和三重态激子的湮灭[J]. 中国科学:G辑,2009,39(5): 662-668. Liu Rong, Lei Yan-lian, Zhang Yong,et al. The Zeeman splitting and three triplet state exciton annihilation in OLEDs[J]. Science in China (Series G), 2009, 39(5): 662-668.

[22] Kido J, Hongawa K, Okuyama K, et al. Bright blue electroluminescence from poly(n-vinylcarbazole)[J]. Appl Phys Lett, 1993, 63(19): 2627-2629.
[1] 陈鸣, 陈杰, 肖璟博. 一种应用于CMOS图像传感器的流水线模数转换器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 968-976.
[2] 申晶, 张晓林. 一种低功耗CMOS并行双频低噪声放大器[J]. 吉林大学学报(工学版), 2013, 43(02): 485-490.
[3] 韩强,姜文龙,姚冠新. 利用混合母体结构改善有机发光器件性能[J]. 吉林大学学报(工学版), 2011, 41(03): 787-790.
[4] 唐威,吴龙胜,刘存生,刘佑宝. 深亚微米部分耗尽型SOI MOSFET的建模及特征提取方法[J]. 吉林大学学报(工学版), 2011, 41(03): 782-786.
[5] 杨志民,马义德,马永杰,3,摆玉龙,杨鸿武 . 基于0.13 μm工艺的低电压CMOS场效应管输出电导[J]. 吉林大学学报(工学版), 2009, 39(01): 229-233.
[6] 周求湛,张苑,孙玉晶,张贺彬,谢宁 . 基于独立分量分析的光电耦合器件
可靠性时域筛选方法
[J]. 吉林大学学报(工学版), 2008, 38(05): 1242-1247.
[7] 漆奇,,张彤,,刘丽,,3,刘奎学,,徐宝琨, . 基于辐射功率的微热板测温系统设计[J]. 吉林大学学报(工学版), 2008, 38(04): 936-939.
[8] 周建明,高晓薇,费元春 . 一种新的阶跃恢复二极管建模方法及其在短脉冲产生电路中的应用[J]. 吉林大学学报(工学版), 2007, 37(01): 173-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .