吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 121-126.doi: 10.13229/j.cnki.jdxbgxb201501018

• 论文 • 上一篇    下一篇

基于微分方程组法的柔性墩台内力计算分析

王伟1,2,王磊1   

  1. 1.吉林大学 建设工程学院,长春 130026;
    2.长春工程学院 勘测学院,长春 130012
  • 收稿日期:2013-09-24 出版日期:2015-02-01 发布日期:2015-02-01
  • 作者简介:王伟(1982),男,工程师,博士研究生.研究方向:地质工程及桥梁结构计算.E-mail:wangwei1982718@sohu.com
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2010CB731503).

Calculation and analysis of flexible pier internal force based on method of differential equation set

Wang Wei1,2,Wang Lei1   

  1. 1.College of Construction Engineering, Jilin University, Changchun 130026,China;
    2.School of Prospecting and Surveying, Changchun Institute of Technology, Changchun 130012,China
  • Received:2013-09-24 Online:2015-02-01 Published:2015-02-01

摘要: 以Maple软件为平台,提出了利用求解微分方程组对柔性墩台进行内力计算的方法。此方法先将桥梁各墩台分别视为一整体考虑,根据各节点处的协调变形关系和力的平衡条件建立墩台各计算单元的微分关系。再通过将整联墩台视为一整体考虑,根据混凝土的收缩、徐变以及温度影响力在各节点处产生的横向位移确定各墩台之间的微分关系。最后通过联立微分方程组并求解,得到各墩台内力变化的函数解析式。与目前广泛使用的“集成刚度法”相比,本文方法计算步骤简捷方便,计算结果精确可靠。

关键词: 道路工程, 微分方程组, 柔性墩台, 内力计算

Abstract: Using Maple software as the platform, a method is proposed to calculate the internal force of flexible pier by solving the differential equation set. In this method, first, each bridge pier is considered as a whole, and the differential relationship of each calculation unit of the pier is established according to the coordinating deformation of each node and the force equilibrium condition. Then, all the bridge piers are considered as a whole, and the differential relationships among the piers are established according to the lateral displacement produced by shrinkage, the creep of concrete and the temperature influence on each node. Finally, by simultaneously solving the differential equation set, the internal force functional analytical formula of each pier was obtained. Compared to the currently used integrated stiffness method, the proposed calculation method has the advantages of simple and convenient, and the result is more precise and reliable.

Key words: road engineering, differential equations set, flexible pier, internal force calculation

中图分类号: 

  • U443.21
[1] 王晓谋. 基础工程[M]. 北京:人民交通出版社,2003.
[2] 袁伦一. 连续桥面简支梁桥墩台计算实例[M]. 北京:人民交通出版社,1995.
[3] 孙训方,方孝淑. 材料力学[M]. 5版.北京:高等教育出版社,2000.
[4] 朱彦鹏,张安疆. m法求解桩身内力与变形的幂级数解[J]. 甘肃工业大学学报,1997,23(3):77-82.
Zhu Yan-peng, Zhang An-jiang. Power series solution of internal force and deformation of piles with m-method[J]. Journal of Gansu University of Technology, 1997, 23(3):77-82.
[5] 张耀辉,王新敏. 弹性支座对铁路简支梁桥墩台内力的影响研究[J]. 石家庄铁道学院学报,1999,12(3):80-83.
Zhang Yao-hui, Wang Xin-min. Study on the internal force of the railway bridge pie with flexible support simple beam[J]. Journal of Shijiazhuang and Railway Institute, 1999, 12(3):80-83.
[6] 郗蔚东. 墩台桩(柱)基础空间计算的有限元法[J]. 桥梁建设,1984(2):31-46.
Xi Wei-dong.The finite element method of space calculation in pier and abutment pile foundation[J]. Bridge Construction,1984(2):31-46.
[7] 吴宜凤,刘文会. 二维动态规划法在桩柱式墩台活载内力计算中的应用[J]. 吉林交通科技,1998(4):24-26.
Wu Yi-feng,Liu Wen-hui.Application of two dimension dynamic planning on live load calculation of pile-columnpier[J].Jilin Science and Technology of Communications,1998(4):24-26.
[8] 马缤辉,赵明华. 考虑水平力作用的弹性地基梁位移及内力解析解[J]. 西北地震学报,2011,33:94-98.
Ma Bin-hui, Zhao Ming-hua. An analytical solution of beam on elastic foundation subjected to horizontal force[J].Northwestern Seismological Journal, 2011, 33:94-98.
[9] 周绍烈. 梁桥墩台设计水平力的计算方法[J].西南交通大学学报,1993(5):30-36.
Zhou Shao-lie. A general method for analyzing the horizontal loading acting on girder bridges[J]. Journal of Southwest Jiaotong University, 1993(5):30-36.
[10] 徐玉中,周德富. 梁桥墩台水平力位移传导计算法[J].公路,1995(3):9-13.
Xu Yu-zhong,Zhou De-fu.The calculation method of horizontal force displacement conduction of girder bridge pier[J].Highway,1995(3):9-13.
[11] 张磊. 水平荷载作用下单桩性状研究[D]. 杭州:浙江大学,2011.
Zhang Lei.Study on behavior of single pile under lateral loading[D]. Hangzhou: Zhejiang University, 2011.
[12] 李靖森,胡达和. 柔性墩台水平荷载的分配方法(修改《公路桥涵设计规范》专题报告) [R].北京:北京建筑工程学院,1981.
[13] 赖琼华.桩的P-S曲线计算方法[J]. 岩石力学与工程学报,2003,22(3):509-513.
Lai Qiong-hua. Calculation procedure for P-S curve of piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,22(3):509-513.
[14] 赵明华,邹新军,罗松南. 水平荷载下桩侧土体位移分布的弹性解及其工程应用[J]. 土木工程学报,2005,38(10):108-111.
Zhao Ming-hua, Zou Xin-jun, Luo Song-nan. Analytical solution of the elastic displacement distribution in the surrounding soil of laterally loaded piles and its application[J]. China Civil Engineering Journal, 2005, 38(10): 108-111.
[15] 周洪波,杨敏. 水平受荷桩的耦合算法[J]. 岩土工程学报,2005,27(4):432-436.
Zhou Hong-bo, Yang Min. A coupling analytical solution of piles subjected lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4):432-436.
[16] 范秋雁,许胜才. 一类双排桩支护结构内力计算[J]. 岩石力学与工程学报,2012,31(增刊1):3152-3158.
Fan Qiu-yan, Xu Sheng-cai. Calculation for a type of retaining structure with double-row piles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(Suppl.1):3152-3158.
[17] 陈宝银. 桩基础梁桥柔性墩纵向水平力分析[J]. 武汉工业学院学报,2012,31(4):69-72.
Chen Bao-yin. Calculation of the longitudinal level force at flexible pier of Bridge of pile of foundation[J]. Journal of Wuhan Polytechnic University, 2012,31(4):69-72.
[18] Poulos H G. Behavior of laterally loaded piles:I-single piles[J].ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(5): 711-731.
[19] Poulos H G. Behaviour of laterally-loaded piles:II - pile groups[J].ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(5): 732-751.
[20] Pak R Y S. On the flexure of a partially embedded bar under lateal loads[J]. Journal of Applied Mechanics, 1989, 56(2):263-269.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[8] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[15] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!