吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 394-399.doi: 10.13229/j.cnki.jdxbgxb201502009

• 论文 • 上一篇    下一篇

沥青玛蹄脂混合料矿料骨架构成及其接触特性

张东1,黄晓明2,赵永利2   

  1. 1.南京工业大学 交通学院, 南京 210009;
    2.东南大学 交通学院, 南京 210096
  • 收稿日期:2013-11-13 出版日期:2015-04-01 发布日期:2015-04-01
  • 作者简介:张东(1983),男,讲师,博士.研究方向:道路材料.E-mail:dzhang@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(51178112).

Aggregate skeleton composition of stone mastic asphalt and its contact properties

ZHANG Dong1, HUANG Xiao-ming2, ZHAO Yong-li2   

  1. 1.College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 210009, China;
    2.School of Transportation, Southeast University, Nanjing 210096, China
  • Received:2013-11-13 Online:2015-04-01 Published:2015-04-01

摘要: 通过建立沥青玛蹄脂混合料SMA-13三维离散元模型,研究了SMA-13的矿料骨架构成及其接触特性。利用PFC3D中的FISH语言编制用户子程序,提取了不同粒径集料(>2.36 mm)之间的接触力。在统计大量数据的基础上,分析了各粒径集料在SMA-13中的作用和各粒径集料自身之间以及与其他粒径集料之间的接触特点。研究表明:在SMA-13中,13.2、9.5和4.75 mm集料相互接触构成骨架,承担大部分荷载,而2.36 mm集料主要填充骨架的空隙,承担小部分荷载;并且9.5 mm集料和4.75 mm集料是构成集料骨架的主体,承担60%左右的荷载。

关键词: 道路工程, 沥青混合料, 矿料骨架, 离散元, 接触力

Abstract: The aggregate skeleton composition of the stone mastic asphalt with the nominal maximum aggregate size of 13.2 mm (SMA-13) and its contact properties were studied using a three-dimensional discrete element method. A user-writing program was coded with FISH language to extract the contact forces in different sized aggregates (> 2.36 mm). The roles of different sized aggregates and the contact properties between these aggregates were investigated based on the statistical analysis of large amount of data. The results of the study show that aggregates with sizes of 13.2 mm, 9.5 mm and 4.75 mm form the aggregate skeleton of SMA-13, while 2.36 mm aggregates mainly fill the voids of the skeleton. Furthermore, aggregates of sizes 9.5 mm and 4.75 mm are the main body of the skeleton, which bear nearly 60% of the vehicle load on asphalt pavement.

Key words: road engineering, asphalt mixtures, aggregate skeleton, discrete element method, contact force

中图分类号: 

  • U416
[1] 赵永利. 沥青混合料的结构组成机理研究[D]. 南京: 东南大学交通学院, 2005.
Zhao Yong-li. Composition mechanism of asphalt mixtures[D]. Nanjing: School of Transportation, Southeast University, 2005.
[2] Cundall P A. A computer model for simulating progressive large-scale movements in blocky rock systems[C]∥Proceedings of the International Symposium on Rock Fracture. Nancy, France, 1971:11-18.
[3] Itasca Consulting Group. PFC 2D Version 3.1[M].
Minneapolis: Itasca Consulting Group, 2004.
[4] Itasca Consulting Group. PFC 3D Version 3.1[M]. Minneapolis: Itasca Consulting Group, 2004.
[5] You Z, Buttlar W G. Discrete element modeling to predict the modulus of asphalt concrete mixtures[J]. Journal of Materials in Civil Engineering, 2004, 16(2): 140-146.
[6] Abbas A, Masad E, Papagiannakis T, et al. Micro-mechanical modeling of the viscoelastic behavior of asphalt mixtures using the discrete-element method[J]. International Journal of Geomechanics, 2007, 7(2): 131-139.
[7] Liu Y, You Z. Discrete-element modeling: impacts of aggregate sphericity, orientation, and angularity on creep stiffness of idealized asphalt mixtures[J]. Journal of Engineering Mechanics, 2011, 137(4): 294-303.
[8] Chen J, Pan T, Chen J, et al. Predicting the dynamic behavior of asphalt concrete using three-dimensional discrete element method[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2012, 27(2): 382-388.
[9] Zhang D, Huang X, Zhao Y. Algorithms for generating three-dimensional aggregates and asphalt mixture samples by the discrete element method[J]. Journal of Computing in Civil Engineering, 2013, 27(2): 111-117.
[10] 中华人民共和国交通部. 公路沥青路面施工技术规范(JTG F 40-2004)[M]. 北京: 人民交通出版社, 2004.
[11] 中华人民共和国交通部.公路沥青路面设计规范(JTG D 50-2004)[M].北京:人民交通出版社,2004.
[12] You Z,Adhikari S,Dai Q.Three-dimensional discrete element models for asphalt mixtures[J]. Journal of Engineering Mechanics,2008,134(12):1053-1063.
[13] 张东. 沥青混合料粗集料的形态特征研究和力学性能的离散元模拟[D]. 南京: 东南大学交通学院, 2013.
Zhang Dong. Research on morphology of coarse aggregates and its mechanical performance by discrete element modeling[D]. Nanjing: School of Transportation, Southeast University, 2013.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[3] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[4] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[5] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[6] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[7] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[8] 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517.
[9] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[10] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[11] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[12] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[13] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[14] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[15] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!