吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1107-1114.doi: 10.13229/j.cnki.jdxbgxb201504013

• • 上一篇    下一篇

隔板式钢-混凝土曲线组合梁弯扭性能

张彦玲1, 2, 孙瞳1, 2, 侯忠明3, 李运生1, 2   

  1. 1.石家庄铁道大学 土木工程学院,石家庄 050043;
    2.石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室,石家庄 050043;
    3.清华大学 土木工程系,北京100084
  • 收稿日期:2013-10-29 出版日期:2015-07-01 发布日期:2015-07-01
  • 通讯作者: 李运生(1970-),男,教授,博士.研究方向:钢结构与组合结构桥梁.E-mail:liysh70@163.com
  • 作者简介:张彦玲(1973-),女,教授,博士.研究方向:钢结构与组合结构桥梁.E-mail:06mzhang@163.com
  • 基金资助:
    国家自然科学基金项目(51108281); 河北省自然科学基金项目(E2014210038); 河北省高等学校科学技术研究项目(ZD2014025)

Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms

ZHANG Yan-ling1, 2, SUN Tong1, 2, HOU Zhong-ming3, LI Yun-sheng1, 2   

  1. 1.School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
    2.Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;
    3.Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2013-10-29 Online:2015-07-01 Published:2015-07-01

摘要: 为了研究钢-混凝土曲线组合梁的受力性能及横隔板影响,以跨径比(计算跨度与曲线半径的比值)和横隔板数目为参数,对6片“隔板式”简支曲线组合梁进行了试验研究和有限元数值模拟,分析了其在跨中荷载作用下的全过程受力性能、应变分布和结合面相对滑移规律。结果表明:跨径比的增大使曲线组合梁的弯扭破坏特征加强,横隔板数量对其影响不大;切向和径向应变均在有横隔板处曲线内侧小、外侧大,无横隔板处则相反;结合面切向和径向滑移均随跨径比的增大而增大,横隔板数目对切向滑移影响较小,但横隔板处径向滑移增大。因此横隔板对曲线组合梁的横向应变分布和径向滑移有较大影响,端横隔板对增加抗扭刚度作用明显。

关键词: 土木建筑结构, 钢-混凝土曲线组合梁, 弯扭效应, 横隔板, 模型试验, 有限元分析

Abstract: In order to study the stress behavior and diaphragm effect of steel-concrete curved composite beam, model test and finite element analysis were conducted on six simple model beams stiffened with diaphragms. The span-radius ratio and the number of diaphragms were taken as the design parameters. Under the concentrated load at the middle span of the beam, the whole process behavior, section strain and interfacial slip were analyzed. The results show that, with the increase in span-radius ratio the bending-torsional failure of the steel-concrete curved composite beam becomes more obvious; while the number of diaphragms has little influence on the bending-torsional failure. At positions close to the diaphragm the tangential and radial strains are small inside the curve and large outside the curve, which are reverse at position far from the diaphragm. The tangential and radial slippages between the concrete slab and steel girder both increase with the span-radius ratio; while the number of diaphragms has little influence on the tangential slippage, but the radius slippage increases close to the diaphragm. The diaphragms have large effect on the transverse distribution of the strain, and the end diaphragms can enlarge the torsional stiffness of curved composite beams apparently.

Key words: civil engineering structure, steel-concrete curved composite beam, bending-torsion couple effect, diaphragm, model test, finite element analysis

中图分类号: 

  • U448.21
[1] Thevendran V, Chen S, Shanmugam N E, et al. Nonlinear analysis of steel-concrete composite beams curved in plan[J]. Finite Elements in Analysis and Design, 1999, 32(3):125-139.
[2] Thevendran V, Chen S, Shanmugam N E, et al. Experimental study on steel-concrete composite beams curved in plan[J]. Engineering Structures, 2000, 22(8): 877-889.
[3] Lee Y H, Sung W J, Lee T H, et al. Finite element formulation of a composite double T beam subjected to torsion[J]. Engineering Structures, 2007, 29(11): 2935-2945.
[4] Tan E L, Uy B. Experimental study on straight composite beams subjected to combined flexure and torsion[J]. Journal of Constructional Steel Research, 2009, 65(4): 784-793.
[5] Tan E L, Uy B. Experimental study on curved composite beams subjected to combined flexure and torsion[J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1855-1863.
[6] Tan E L,Uy B.Nonlinear analysis of composite beams subjected to combined flexure and torsion[J].Journal of Constructional Steel Research,2011,67(5):790-799.
[7] Kim K, Yoo C H. Ultimate strength interaction of bending and torsion of steel-concrete composite trapezoidal box girders in positive bending[J]. Advances in Structural Engineering, 2006, 9(5): 707-718.
[8] Kyungsik K, Chai H Y. Bending behaviors of quasi-closed trapezoidal box girders with X-type internal cross-frames[J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1827-1835.
[9] 胡少伟, 聂建国, 朱林森. 钢-混凝土组合梁复合弯扭作用下非线性分析[J]. 工程力学, 2005, 22(2): 1-5, 26. Hu Shao-wei, Nie Jian-guo, Zhu Lin-sen. Nonlinear analysis of composite steel-concrete beams under combined flexure and torsion[J]. Engineering Mechanics, 2005, 22(2): 1-5, 26.
[10] 聂建国, 唐亮, 胡少伟, 等. 钢-混凝土组合箱梁的抗扭强度[J]. 土木工程学报, 2008, 41(1): 1-11. Nie Jian-guo, Tang Liang, Hu Shao-wei, et al. Torsional strength of steel-concrete composite box girders[J]. China Civil Engineering Journal, 2008, 41(1): 1-11.
[11] 张彦玲, 葛威, 侯忠明, 等. 弯扭联合作用下钢-混凝土组合箱梁受力特性的试验研究[J]. 石家庄铁道大学学报: 自然科学版, 2012, 25(4): 1-6. Zhang Yan-ling, Ge Wei, Hou Zhong-ming, et al. Experimental research on stress characteristics of steel-concrete composite box beams under bending-torsion action[J]. Journal of Shijiazhuang Tiedao University (Natural Science) , 2012, 25(4): 1-6.
[12] 胡少伟, 陈亮.预应力钢箱高强混凝土组合梁受扭性能全过程分析[J].工程力学,2011,28(2): 129-133. Hu Shao-wei, Chen Liang. Complete history analysis on torsional performance of prestressed steel-HSC composite box beams[J]. Engineering Mechanics, 2011, 28(2): 129-133.
[13] 吴中鑫, 杨平. 钢-预应力混凝土组合梁抗扭极限分析[J]. 武汉理工大学学报: 交通科学与工程版, 2010, 34(2): 362-365,369. Wu Zhong-xin, Yang Ping. Analysis of ultimate torsional strength for the pre-stressed steel concrete composite beams[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2010, 34(2): 362-365, 369.
[14] 聂建国, 田春雨. 考虑剪力滞后的组合梁极限承载力 计算[J]. 中国铁道科学, 2005, 26(4): 16-22. Nie Jian-guo, Tian Chun-yu. Moment resistance of composite beam at ultimate limit state considering shear-lag effect[J]. China Railway Science, 2005, 26(4): 16-22.
[1] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[2] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[3] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[4] 尼颖升, 孙启鑫, 马晔, 徐栋. 基于拉应力域的波形钢腹板组合梁承载力配筋计算[J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[5] 孙荣军, 谷拴成, 居培, 高科. 基于有限元分析的煤矿井下新型弧角型聚晶金刚石复合片钻头优化设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1991-1998.
[6] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[7] 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096.
[8] 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报(工学版), 2016, 46(2): 445-450.
[9] 吴越, 杨志刚, 陈龙, 康晓涛, 张东伟. 压电悬臂梁多模态发电装置的仿真与试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1162-1167.
[10] 王春刚, 张壮南, 赵大千, 曹宇飞. 腹板开孔Σ形复杂卷边槽钢轴压承载力试验[J]. 吉林大学学报(工学版), 2015, 45(3): 788-796.
[11] 苏迎社,杨媛媛. 疏排桩支护结构中土拱荷载传递比分析[J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
[12] 李海锋,郭小农,罗永峰,高轩能. 索支撑柔性摩天轮结构抗倒塌性能分析[J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
[13] 于振环,张娜,刘顺安. 基于流-固耦合的车辆减振器动态非线性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(1): 16-21.
[14] 云迪, 刘贺, 张素梅. 中承式钢管混凝土拱桥弹塑性地震时程分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1633-1638.
[15] 郭俊平1, 邓宗才1, 卢海波2, 林劲松2. 预应力高强钢绞线网抗剪加固钢筋混凝土梁试验[J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!