吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 585-594.doi: 10.13229/j.cnki.jdxbgxb201602037
张贵军, 郝小虎, 周晓根, 秦传庆
ZHANG Gui-jun, HAO Xiao-hu, ZHOU Xiao-gen, QIN Chuan-qing
摘要: 针对蛋白质构象空间采样问题,提出了一种基于能量引导树搜索框架的动态步长构象空间搜索方法.通过蛋白质构象特征提取,将高维二面角优化空间映射到低维结构特征向量空间,有效避免了维数灾难问题;根据能量和温度测度离散化特征空间为多个能量层和温度层,并系统划分为"构象室",减小构象空间搜索范围.在不同能量层,赋予相应的片段组装步长和蒙特卡洛扰动步长,在不同温度层,采用相应Metropolis准则接收当前构象;辅以副本交换方法,增强对构象空间中稳态结构的采样能力.12个蛋白质测试结果表明,该方法可以快速有效地采样得到近天然态构象.
中图分类号:
[1] Ken A Dill, Justin L, Mac Callum. The protein folding problem, 50 years on[J]. Science, 2012, 338 (11): 1042-1046. [2] Anfinsen C. Principles that govern the folding of protein chains[J]. Science, 1973, 181(96): 223-230. [3] 许忠能.生物信息学[M].北京:清华大学出版社,2008. [4] Kim D E, Blum B, Bradley P, et al. Sampling bottlenecks in de novo protein structure prediction[J]. Journal of Molecular Biology, 2009, 393(1): 249-260. [5] 黄俊峰,段鹏,吴文言.基于模板的蛋白质结构预测[J].生物物理学报,2011,27(1):28-37. Huang Jun-feng, Duan Peng, Wu Wen-yan. Protein structure prediction based on the template[J]. Acta Biophysica Sinica, 2011,27(1):28-37. [6] Kryshtafovych A, Fidelis K, Moult J. CASP10 results compared to those of previous CASP experiments[J]. Proteins: Structure, Function, and Bioinformatics, 2014, 82(S2): 164-174. [7] Beliakov G, Lim K F. Challenges of continuous global optimization in molecular structure prediction[J]. European Journal of Operational Research, 2007, 181(3): 1198-1213. [8] Tantar A A, Melab N, Talbi E G, et al. A parallel hybrid genetic algorithm for protein structure prediction on the computational grid[J]. Future Generation Computer Systems, 2007, 23(3): 398-409. [9] Hoque M T, Chetty M, Lewis A, et al. Twin removal in genetic algorithms for protein structure prediction using low-resolution model[J]. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 2011, 8(1): 234-245. [10] Islam M K, Chetty M. Clustered memetic algorithm with local heuristics for Ab-initio protein structure prediction[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(4): 558-576. [11] Custódio F L, Barbosa H J C, Dardenne L E. A multiple minima genetic algorithm for protein structure prediction[J]. Applied Soft Computing, 2014, 15: 88-99. [12] Duan Y, Kollman P A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution[J]. Science, 1998, 282(5389): 740-744. [13] Scheraga H A, Khalili M, Liwo A. Protein folding dynamics: overview of molecular simulation techniques[J]. Annu Rev Phys Chem, 2007, 58: 57-83. [14] Lindorff-Larsen K, Trbovic N, Maragakis P, et al. Structure and dynamics of an unfolded protein examined by molecular dynamics simulation[J]. Journal of the American Chemical Society, 2012, 134(8): 3787-3791. [15] Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding[J]. Proteins: Structure, Function, and Bioinformatics, 2002, 48(2): 192-201. [16] Shen Y, Picord G, Guyon F, et al. Detecting protein candidate fragments using a structural alphabet profile comparison approach[J]. PloS One, 2013, 8(11): e80493. [17] Xu D, Zhang Y. Toward optimal fragment generations for ab-initio protein structure assembly[J]. Proteins: Structure, Function, and Bioinformatics, 2013, 81(2): 229-239. [18] Dotu I, Cebrian M, Van Hentenryck P, et al. On lattice protein structure prediction revisited[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(6): 1620-1632. [19] Tyka M D, Jung K, Baker D. Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers[J]. Journal of Computational Chemistry, 2012, 33(31): 2483-2491. [20] Joo K, Lee J, Sim S, et al. Protein structure modeling for CASP10 by multiple layers of global optimization[J]. Proteins: Structure, Function, and Bioinformatics, 2014, 82(S2): 188-195. [21] Sugita Y, Okamoto Y. Replicae-xchange molecular dynamics method for protein folding[J]. Chemical Physics Letters, 1999, 314(1): 141-151. [22] Sugita Y, Okamoto Y. Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape[J]. Chemical Physics Letters, 2000, 329(3): 261-270. [23] Shehu A. An Ab-initio tree-based exploration to enhance sampling of low-energy protein conformations[C]∥Robotics: Science and Systems,2009: 241-248. [24] Shehu A, Olson B. Guiding the search for native-like protein conformations with an Ab-inito tree-based exploration[J]. Robotics Research,2010, 29(8):1106-1127. [25] Olson B, Molloy K, Shehu A. In search of the protein native state with a probabilistic sampling approach[J]. Journal of Bioinformatics and Computational Biology, 2011, 9(3): 383-398. [26] Olson B, Shehu A. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface[J]. Proteome Sci, 2012, 10(Suppl 1): S5. [27] Molloy K, Saleh S, Shehu A. Probabilistic search and energy guidance for biased decoy sampling in Ab initio protein structure prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2013, 10(5): 1162-1175. [28] 周建红,艾观华,方慧生,等.蛋白质结构从头预测方法研究进展[J].生物信息学, 2011,9(1):1-5. Zhou Jian-hong, Ai Guan-hua, Fang Hui-sheng, et al. Progress in ab initio protein structure prediction[J]. Bioinformatics, 2011, 9(1):1-5. [29] Bradley P, Misura K M, Baker D. Toward high-resolution de novo structure prediction for small proteins[J]. Science, 2005, 309(5742): 1868-1871. [30] Liwo A, Khalili M, Scherage H A. Ab-initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains[J]. PNAS, 2005, 102 (7): 2362-2367. [31] Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures[J]. Proceedings of the National Academy of Sciences of the Unitized States of America, 2000, 97(19): 10383-10388. [32] Kortemme T, Morozov A V, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of speci?city and structure for proteins and protein-protein complexes[J]. Journal of Molecular Biology, 2003, 326(4): 1239-1259. [33] Enoch S Huang, Ram Samudrala, Britt H Park. Scoring functions for ab initio protein structure prediction[J]. Methods Mol Biol, 2000, 143 (1): 223-245. [34] Ballester P J, Richards W G. Ultrafast shape recognition for similarity search in molecular databases[J]. Proc R Soc A, 2007,463(2081): 1307-1321. [35] Lee J, Scheraga H A, Rackovsky S. New optimization method for conformational energy calculations on polypeptides: conformational space annealing[J]. Journal of Computational Chemistry, 1997, 18(9): 1222-1232. [36] Berg B A, Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions[J]. Physical Review Letters, 1992, 68(1):9-12. [37] Wang G, Dunbrack R L. PISCES: a protein sequence culling server[J]. Bioinformatics, 2003, 19(12): 1589-1591. [38] Gront D, Kulp D W, Vernon R M, et al. Generalized fragment picking in Rosetta: design, protocols and applications[J]. PLoS One, 2011, 6(8): e23294. [39] Keaver-Fay A, Tyka M, Lewis S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[J]. Methods in Enzymology, 2011, 487:545-574. [40] Li Z, Scheraga H A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding[J]. PNAS, 1987, 84(19): 6611-6615. [41] Lee J Y, Lee J Y, Sasaki T N, et al. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing[J]. Proteins, 2011, 79(8):2403-2417. [42] Stoean C, Preuss M, Stoean R, et al. Multimodal optimization by means of a topological species conservation algorithm[J]. Evolutionary Computation, 2010, 14(6): 842-864. |
[1] | 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577. |
[2] | 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585. |
[3] | 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[4] | 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[5] | 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[6] | 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[7] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[8] | 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[9] | 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[10] | 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[11] | 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
[12] | 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[13] | 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230. |
[14] | 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243. |
[15] | 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252. |
|