吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 2034-2041.doi: 10.13229/j.cnki.jdxbgxb201606037
李勇1, 2, 黄志球1, 王勇1, 房丙午1
LI Yong1, 2, HUANG Zhi-qiu1, WANG Yong1, FANG Bing-wu1
摘要: 跨项目(CP)的软件缺陷预测方法可以解决传统基于目标项目(WP)实现预测时要求有历史积累数据以及缺陷标注代价较高等问题。针对已有CP方法中存在的预测性能较低和可操作性较差等不足,提出了一种基于多源数据的跨项目软件缺陷预测方法。首先获取与目标项目特征相似的多源项目为候选;然后以候选项目的软件模块引导训练数据的选择;最后基于朴素贝叶斯算法实现预测模型。采用真实的软件缺陷数据进行实验,结果表明该方法的性能优于传统的WP方法,可以代替WP方法用于软件工程实践。
中图分类号:
[1] Caglayan B, Tosun M A, Bener A B, et al. Predicting defective modules in different test phases[J]. Software Quality Journal,2015,23(2):205-227. [2] 陈媛,沈湘衡,王安邦,等. 似然关系模型在航天软件缺陷预测中的应用[J]. 光学精密工程, 2013,21(7):1865-1872. Chen Yuan,Shen Xiang-heng,Wang An-bang,et al.Application of probabilistic relational model toaerospace software defect prediction[J]. Optics and Precision Engineering, 2013,21(7):1865-1872. [3] 王红园,郭永飞,姬琪. 面向需求覆盖的航天软件测试用例优化方法[J]. 光学精密工程,2014,22(1):228-234. Wang Hong-yuan, Guo Yong-fei, Ji Qi. Optimization of aerospace software test cases based on requirement coverage[J]. Optics and Precision Engineering, 2014,22(1):228-234. [4] Shepperd M, Bowes D, Hall T. Researcher bias: the use of machine learning in software defect prediction[J]. IEEE Transactions on Software Engineering,2014,40(6):603-616. [5] Turhan B. On the dataset shift problem in software engineering prediction models[J]. Empirical Software Engineering,2012,17(1):62-74. [6] Watanabe S, Kaiya H, Kaijiri K. Adapting a fault prediction model to allow inter language reuse[C]∥Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, New York, NY, USA,2008:19-24. [7] Nam J, Pan S J, Kim S. Transfer defect learning[C]∥Proceedings of the 2013 International Conference on Software Engineering, San Francisco,2013:382-391. [8] He Peng, Li Bing, Liu Xiao, et al. An empirical study on software defect prediction with a simplified metric set[J]. Information and Software Technology,2015,59:170-190. [9] Menzies T, Butcher A, Cok D, et al. Local versus global lessons for defect prediction and effort estimation[J]. IEEE Transactions on Software Engineering,2013,39(6):822-834. [10] Turhan B, Menzies T, Bener A B, et al. On the relative value of cross-company and within-company data for defect prediction[J]. Empirical Software Engineering,2009,14(5):540-578. [11] Peters F, Menzies T, Marcus A. Better cross company defect prediction[C]∥Proceedings of the Tenth International Workshop on Mining Software Repositories, San Francisco, CA, USA, 2013:409-418. [12] He Z, Shu F, Yang Y, et al. An investigation on the feasibility of cross-project defect prediction[J]. Automated Software Engineering,2012,19(2):167-199. [13] Herbold S. Training data selection for cross-project defect prediction[C]∥Proceedings of the 9th International Conference on Predictive Models in Software Engineering, Baltimore,2013:1-10. [14] Turhan B, Bener A. Analysis of Naive Bayes' assumptions on software fault data:an empirical study[J]. Data & Knowledge Engineering,2009,68(2):278-290. [15] Pang-Ning T, Steinbach M, Kumar V. Introduction to Data Mining[M]. New York: Pearson,2005: 231-236. [16] Jureczko M, Spinellis D. Using object-oriented design metrics to predict software defects[C]∥Fifth International Conference on Dependability of Computer Systems DepCoS,Poland,2010: 69-81. [17] Catal C, Diri B. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem[J]. Information Sciences,2009,179(8):1040-1058. [18] Rahman F, Devanbu P. How, and why, process metrics are better[C]∥Proceedings of the 2013 International Conference on Software Engineering, San Francisco, CA, USA,2013:432-441. [19] Lessmann S, Baesens B, Mues C, et al. Benchmarking classification models for software defect prediction: a proposed framework and novel findings[J]. IEEE Transactions on Software Engineering,2008,34(4): 485-496. [20] Okutan A, Y 1 ld 1 z O T. Software defect prediction using Bayesian networks[J]. Empirical Software Engineering,2014,19(1):154-181. [21] Rahman F, Posnett D, Devanbu P. Recalling the “imprecision” of cross-project defect prediction[C]∥Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, North Carolina,2012:1-11. [22] Shull F, Basili V, Boehm B, et al. What we have learned about fighting defects[C]∥IEEE Symposium on Software Metrics, Washington, DC, USA, 2002:249-258. |
[1] | 马健, 樊建平, 刘峰, 李红辉. 面向对象软件系统演化模型[J]. 吉林大学学报(工学版), 2018, 48(2): 545-550. |
[2] | 罗养霞, 郭晔. 基于数据依赖特征的软件识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1894-1902. |
[3] | 应欢, 王东辉, 武成岗, 王喆, 唐博文, 李建军. 适用于商用系统环境的低开销确定性重放技术[J]. 吉林大学学报(工学版), 2017, 47(1): 208-217. |
[4] | 王念滨, 祝官文, 周连科, 王红卫. 支持高效路径查询的数据空间索引方法[J]. 吉林大学学报(工学版), 2016, 46(3): 911-916. |
[5] | 特日跟, 江晟, 李雄飞, 李军. 基于整数数据的文档压缩编码方案[J]. 吉林大学学报(工学版), 2016, 46(1): 228-234. |
[6] | 康辉, 王家琦, 梅芳. 基于Pi演算的并行编程语言[J]. 吉林大学学报(工学版), 2016, 46(1): 235-241. |
[7] | 陈鹏飞, 田地, 杨光. 基于MVC架构的LIBS软件设计与实现[J]. 吉林大学学报(工学版), 2016, 46(1): 242-245. |
[8] | 刘磊, 王燕燕, 申春, 李玉祥, 刘雷. Bellman-Ford算法性能可移植的GPU并行优化[J]. 吉林大学学报(工学版), 2015, 45(5): 1559-1564. |
[9] | 冯晓宁, 王卓, 张旭. 基于L-π演算的WSN路由协议形式化方法[J]. 吉林大学学报(工学版), 2015, 45(5): 1565-1571. |
[10] | 李明哲, 王劲林, 陈晓, 陈君. 基于网络处理器的流媒体应用架构模型(VPL)[J]. 吉林大学学报(工学版), 2015, 45(5): 1572-1580. |
[11] | 王克朝, 王甜甜, 苏小红, 马培军. 基于频繁闭合序列模式挖掘的学生程序雷同检测[J]. 吉林大学学报(工学版), 2015, 45(4): 1260-1265. |
[12] | 黄宏涛,王静,叶海智,黄少滨. 基于惰性切片的线性时态逻辑性质验证[J]. 吉林大学学报(工学版), 2015, 45(1): 245-251. |
[13] | 范大娟1, 2, 黄志球1, 肖芳雄1, 祝义1, 王进1. 面向多服务交互的相容性分析与适配器生成[J]. 吉林大学学报(工学版), 2014, 44(4): 1094-1103. |
[14] | 贺秦禄1, 李战怀1, 王乐晓1, 王瑞2. 云存储系统聚合带宽测试技术[J]. 吉林大学学报(工学版), 2014, 44(4): 1104-1111. |
[15] | 康辉, 张双双, 梅芳. 一种递归π演算向Petri网的转换方法[J]. 吉林大学学报(工学版), 2014, 44(01): 142-148. |
|