吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1842-1847.doi: 10.13229/j.cnki.jdxbgxb201706023

• 论文 • 上一篇    下一篇

基于逆向工程的复杂曲面冲压件回弹补偿

王辉, 周杰, 熊煜, 陶亚平, 向荣   

  1. 重庆大学 材料科学与工程学院,重庆 400044
  • 收稿日期:2016-09-12 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 周杰(1965-),男,教授,博士生导师.研究方向:模具CAD/CAE及模具再制造.E-mail:zhoujie@cqu.edu.cn
  • 作者简介:王辉(1989-),男,博士研究生.研究方向:汽车覆盖件冲压成形.E-mail:wangxiuhui0412@163.com
  • 基金资助:
    国家自然科学基金项目(51575067)

Springback compensation for stamping part with complex surface based on reverse engineering

WANG Hui, ZHOU Jie, XIONG Yu, TAO Ya-ping, XIANG Rong   

  1. College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
  • Received:2016-09-12 Online:2017-11-20 Published:2017-11-20

摘要: 针对复杂曲面类零件提出了一种采用三维全型面扫描检测零件的方法,通过逆向建模得到扫描数模,并与设计模型进行对比,得到成形零件的偏差量。对于某大型核电汽轮机空心叶片外弧零件,采用提出的三维全型面检测方法对其进行数据检测,并与设计模型进行比较,得出该零件的最大正偏差为2.59 mm,最大负偏差为-3.04 mm。与传统专用检具相比,三维全型面检测可以用于快速检测各类复杂零件,具有检测数据全和精度高的特点。对于该零件的回弹问题,提出了基于逆向工程的零件回弹补偿方法。对叶片外弧零件进行回弹补偿后,进行模具加工和试验,得到最终叶片外弧零件的最大正偏差为1.36 mm,最大负偏差为-1.43 mm,满足叶片外弧尺寸偏差的要求。

关键词: 材料合成与加工工艺, 逆向工程, 回弹补偿, 模具, 复杂曲面

Abstract: For parts with complex surfaces, a 3D scanning measurement method for full profile was proposed. To obtain the shape deviation of the part, the scanning model was built by reverse modeling and used to compare with the design model. The proposed method was used to measure the blade out arc hollow parts of a large nuclear power steam turbine, and then compared with the designed model. The measuring results show that the largest positive and negative deviations are 2.59 mm and -3.03 mm, respectively. Compared with the traditional special fixture, the 3D full profile measurement method can be used to measure various complex parts rapidly, and it has the characteristics of full data and high precision. To solve the springback problem of the part, springback compensation for the part with complex surface based on reverse engineering was introduced. After springback compensation for the blade out arc hollow part, The molds were processed and tested. The results show that the final largest positive and negative deviations are 1.36 mm and -1.43 mm, which meet the requirement of the shape deviation of that part.

Key words: material synthesis and processing technology, reverse engineering, springback compensation, mould, complex curved surface

中图分类号: 

  • TG386.1
[1] Wagoner R H, Lim H, Lee M. Advanced issues in springback[J]. International Journal of Plasticity,2013,45:3-20.
[2] Han F, Mo J, Gong P, et al. Method of closed loop springback compensation for incremental sheet forming process[J]. Journal of Central South University of Technology,2011,18(5):1509-1517.
[3] Oujebbour F Z, Habbal A, Ellaia R. Optimization of stamping process parameters to predict and reduce springback and failure criterion[J]. Structural and Multidisciplinary Optimization,2015,51(2):495-514.
[4] Zhang Z, Wu J, Zhang S, et al. A new iterative method for springback control based on theory analysis and displacement adjustment[J]. International Journal of Mechanical Sciences,2016,105:330-339.
[5] Wang H, Zhou J, Zhao T S, et al. Multiple-iteration springback compensation of tailor welded blanks during stamping forming process[J]. Materials & Design,2016,102:247-254.
[6] 周杰,罗艳,王珣,等. 基于响应面的封头冲压成形工艺多目标优化[J]. 吉林大学学报:工学版,2016,46(1):205-212.
Zhou Jie, Luo Yan, Wang Xun, et al. Multi-objective optimization of stamping forming process of head based on response surface model[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(1):205-212.
[7] Balon P, Swiatoniowski A. Springback compensation in cold forming process for high strength steel[J]. Archives of Metallurgy and Materials,2015,60(4):2471-2478.
[8] Xiong W, Gan Z, Xiong S, et al. Rapid springback compensation for age forming based on quasi newton method[J]. Chinese Journal of Mechanical Engineering,2014,27(3):551-557.
[9] Mole N, Cafuta G, Stok B. A 3D forming tool optimisation method considering springback and thinning compensation[J]. Journal of Materials Processing Technology,2014,214(8):1673-1685.
[10] Cafuta G, Mole N, Štok B. An enhanced displacement adjustment method: Springback and thinning compensation[J]. Materials & Design,2012,40:476-487.
[11] Siswanto W A, Anggono A D, Omar B, et al. An alternate method to springback compensation for sheet metal forming[J]. Scientific World Journal,2014:301271.
[12] 张志强,贾晓飞,袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报:工学版,2015,45(6):1852-1856.
Zhang Zhi-qiang, Jia Xiao-fei, Yuan Qiu-ju. Springback analysis of trip high strength steel based on Yoshida-Uemori model[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(6):1852-1856.
[13] Liao J, Xue X, Zhou C, et al. A springback compensation strategy and applications to bending cases[J]. Steel Research International,2013,84(5):463-472.
[14] 王发成,吕彦明,魏中兴,等. 基于Dynaform的叶片冲压模拟与回弹补偿[J]. 轻工机械,2012,30(3):40-42.
Wang Fa-cheng, Lu Yan-ming, Wei Zhong-xing, et al. Blade punching simulation and springback compensation based on Dynaform[J]. Light Industry Machinery,2012,30(3):40-42.
[15] 聂昕,成艾国,申丹凤,等. 基于汽车梁类件的回弹计算及补偿系统[J]. 机械工程学报,2009,45(7):194-198.
Nie Xin, Cheng Ai-guo, Shen Dan-feng, et al. Springback calculation and compensation system based on rail member panel[J]. Journal of Mechanical Engineering,2009,45(7):194-198.
[16] 冯杨,兰凤崇,阮锋. 基于补偿因子的复杂型面冲压零件回弹控制研究与应用(第Ⅱ部分:应用)[J]. 塑性工程学报,2015,22(1):105-110.
Feng Yang, Lan Feng-chong, Ruan Feng. Research and application of punching springback control of complex surface parts based on compensation factors (II:Application)[J]. Journal of Plasticity Engineering,2015,22(1):105-110.
[17] 冯杨,兰凤崇,阮锋. 基于补偿因子的复杂型面零件冲压回弹控制研究与应用(第Ⅰ部分:理论)[J]. 塑性工程学报,2014,21(6):51-55.
Feng Yang, Lan Feng-chong, Ruan Feng. Theoretical analysis and application research on compensation factors of sheet metal stamping springback (I:Theory)[J]. Journal of Plasticity Engineering,2014,21(6):51-55.
[18] Sheu J J, Jiang M E. The blank design and spring back control of a stamping die by using the bi-arc surface model[J]. Journal of Materials Processing Technology,2007,187-188:150-154.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[3] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[5] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[7] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[8] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[9] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[10] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[11] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[12] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[13] 谷晓燕, 刘亚俊, 孙大千, 徐锋, 孟令山, 高帅. S355钢/6005A铝合金瞬间液相扩散连接接头组织与性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[14] 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[15] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!