吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 957-967.doi: 10.13229/j.cnki.jdxbgxb20170865

• 论文 • 上一篇    下一篇

基于Hyb-F组合滤波算法的向海自然保护区NDVI时间序列重构

刘舒1, 姜琦刚1, 朱航2, 李晓东1,3   

  1. 1.吉林大学 地球探测科学与技术学院, 长春 130026;
    2.吉林大学 机械科学与工程学院, 长春 130022;
    3.白城师范学院 旅游与地理科学学院, 吉林 白城137000;
  • 收稿日期:2017-08-18 出版日期:2018-05-20 发布日期:2018-05-20
  • 通讯作者: 朱航(1982-),女,副教授,博士.研究方向:航空遥感及多源遥感信息融合技术.E-mail:hangzhu@jlu.edu.cn
  • 作者简介:刘舒(1988-),女,博士研究生.研究方向:遥感地学和环境遥感.E-mail:liushu8877@126.com
  • 基金资助:
    中国地质调查局项目(DD2016007706); 国土资源部公益性行业科研专项基金项目(201511078-1); 国家自然科学基金青年基金项目(31501218).

Reconstruction of Landsat NDVI time series of Xianghai natural deserve based on a hybrid filtering algorithm Hyb-F

LIU Shu1, JIANG Qi-gang1, ZHU Hang2, LI Xiao-dong1,3   

  1. 1.College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China;
    2.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    3.College of Tourist and Geoscience, Baicheng Normal College, Baicheng 137000, China
  • Received:2017-08-18 Online:2018-05-20 Published:2018-05-20

摘要: 针对借助遥感手段直接获取的归一化植被指数(NDVI)时间序列含有噪声数据,而单一应用局部或全局时间序列重构算法不能完全剔除噪声,重构精度受到一定影响的问题,本文将局部Savitzky-Golay(S-G)滤波、全局非对称高斯(Asymmetric Gaussian, AG)拟合原理和格拉布斯(Grubbs)检验算法相结合,构建Hyb-F组合式滤波法,重构向海自然保护区8种覆被类型的Landsat NDVI时间序列。首先,通过设定指标阈值剔除序列部分无效值;其次,采用引入Grubbs检验的S-G算法,剔除局部异常值;再次,采用引入Grubbs检验的AG拟合算法,剔除全局异常值;最后,利用S-G滤波算法平滑曲线,得到最终拟合结果。研究表明,该算法对灌木林地、草地、乔木林地和旱田等有植被生长覆被类型样本的拟合结果与纯净数据间相关性较强,相关系数(CC)达0.8488~0.9215,均方根误差(RMSE)为0.0429~0.1057。对盐碱地、建设用地、水域等非植被生长类型的数据具有较好的平滑作用。该算法对整个研究区数据重建效率指数为0.59,可有效地模拟原始数据。相比于单一滤波算法,Hyb-F滤波法具有更强的噪声识别能力,降低噪声引起的峰值损失,不仅能更好地模拟植被生长规律,并且能保留曲线细部特征,获得较高拟合精度。

关键词: 遥感, 组合滤波算法, Savitzky-Golay滤波, 非对称高斯拟合, 格拉布斯检验, 归一化植被指数时间序列

Abstract: Normalized Difference Vegetation Index (NDVI) time series exactly derived from remote sensing data are usually contaminated by different types of noise. Only by adopting the local or global filtering algorithm can not eliminate all kinds of noise from NDVI time series and maintain their local or global characters at the same time. A hybrid filtering algorithm, called Hyb-F, is proposed based on Savitzky-Golay filter, Asymmetric Gaussian algorithm and the Grubbs test method. Then, Hyb-F, which is a four step method, is used to reconstruct the Landsat NDVI time series for eight land cover types within Xianghai National Natural Reserve. First, the obvious outliers are detected and removed by setting thresholds for Normalized Difference Snow Index (NDSI), standard deviation and boundaries of NDVI. Second, via combing Grubbs test and Savitzky-Golay filter, the local outliers are removed. Third, via combing Grubbs test and Assymmetric Gaussian algorithm, the global outliers are removed. Finally, the final NDVI time series are built by using the Savitzky-Golay filter. The shape of fitting curves, statistical indicators and regional application effect of Hyb-F are analyzed. The results of the proposed Hyb-F method are compared with that of only Savitzky-Golay filter or Asymmetric Gaussian algorithm. For the land cover types with vegetation, Hyb-F performs well to the samples of shrub land, grassland, forest and cropland. Results of the mentioned types show large correlation with the clean reference series. The correlation coefficients are from 0.8488 to 0.9215 and the root mean square errors are from 0.0429 to 0.1057. The results of the first two land cover types achieve the highest accuracy among all the methods discussed. For the types without vegetation, such as saline, construction land and water area, the Hyb-F method can smooth the curves well. Compared with other methods, Fyb-F takes all local and global characters and dynamic trends into consideration. It can effectively recognize different types of outliers. Besides, it can weaken the loss of peak values and model the annual growing pattern of land cover types with vegetation. When applied to the whole study region, the indicator of efficiency of reconstruction is 0.59, demonstrating the reliability of Fyb-F. Moreover, the work flow the proposed method is clear and it is easy for application.

Key words: remote sensing, hybrid filtering algorithm, Savitzky-Golay filter, asymmetric Gaussian, Grubbs test, NDVI time series

中图分类号: 

  • TP79
[1] Zhou J, Jia L, Menenti M, et al.On the performance of remote sensing time series reconstruction methods—A spatial comparison[J]. Remote Sensing of Environment, 2016, 187:367-384.
[2] Geng L, Ma M, Wang X, et al.Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the heihe river basin, China[J]. Remote Sensing, 2014, 6(3):2024-2049.
[3] 刘亚南, 肖飞, 杜耘. Logistic函数方法拟合多时序NDVI数据的改进研究[J]. 遥感技术与应用, 2015, 30(4):737-743.
Liu Ya-nan, Xiao Fei, Du Yun.Improved logistic model for fitting time-series NDVI data[J]. Remote Sensing Technology and Application, 2015, 30(4):737-743.
[4] Jonsson P, Eklundh L.Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(8):1824-1832.
[5] Jönsson P, Eklundh L, Timest.A program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences, 2004, 30(8):833-845.
[6] Zhou J, Jia L, Menenti M.Reconstruction of global MODIS NDVI time series: Performance of harmonic analysis of time series (HANTS)[J]. Remote Sensing of Environment, 2015, 163:217-228.
[7] Moreno Á, Garcíaharo F, Martínez B, et al.Noise reduction and gap filling of fAPAR time series using an adapted local regression filter[J]. Remote Sensing, 2014, 6(9):8238-8260.
[8] 张霞, 李儒, 岳跃民, 等. 谐波改进的植被指数时间序列重建算法[J]. 遥感学报, 2010, 14(3): 437-447.
Zhang Xia, Li Ru, Yue Yue-min, et al.Improved algorithm for reconstructing vegetation index image time series based on fourier harmonic analysis[J].Journal of Remote Sensing, 2010, 14(3):437-447.
[9] 刘珺, 田庆久, 黄彦, 等. 黄淮海夏玉米物候期遥感监测研究[J]. 遥感信息, 2013, 28(3):85-90.
Liu Jun, Tian Qing-jiu, Huang Yan, et al.Monitoring phenology of summer maize in huang-huai-hai using remote sensing technology[J]. Remote Sensing Information, 2013, 28(3):85-90.
[10] Liang S, Ma W, Sui X, et, al. Extracting the spatiotemporal pattern of cropping systems from NDVI time series using a combination of the spline and HANTS algorithms: a case study for shandong province[J].Canadian Journal of Remote Sensing, 2017,43(1):1-15.
[11] 卞建民, 林年丰, 汤洁. 吉林西部向海湿地环境退化及驱动机制研究[J]. 吉林大学学报:地学版, 2004, 34(3):441-444,458.
Bian Jian-min, Lin Nian-feng, Tang Jie.The environment degradation and its driving mechanism of Xianghai wetland in the west of Jilin province[J]. Journal of Jilin University (Earth Science Edition), 2004, 34(3):441-444, 458.
[12] 李荣平, 周广胜, 郭春明, 等. 1981-2005年中国东北榆树物候变化特征及模拟研究[J]. 气象与环境学报, 2008, 24(5):20-24.
Li Rong-ping, Zhou Guang-sheng, Guo Chun-ming, et al.Phenology characteristics of ulmus pumila and its simulation from 1981 to 2005 in Northeast China[J]. Journal of Meteorology and Environment, 2008, 24(5):20-24.
[13] 唐蕴, 王浩, 严登华. 向海自然保护区湿地生态需水研究[J]. 资源科学, 2005, 27(5):101-106.
Tang Yun, Wang Hao, Yan Deng-hua.Wetland ecological water demand in Xianghai natural reserve[J]. Resources Science, 2005, 27(5):101-106.
[14] 周增光, 唐娉. 基于质量权重的Savitzky-Golay时间序列滤波方法[J]. 遥感技术与应用, 2013, 28(2):232-239.
Zhou Zeng-guang, Tang Pin.VI-quality-based savitzky-golay method for filtering time series data[J]. Remote Sensing Technology and Application, 2013, 28(2):232-239.
[15] Wu M, Zhang X, Huang W, et al.Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, landsat, and MODIS data for crop monitoring[J]. Remote Sensing, 2015, 7(12):16293-16314.
[16] Li X, Shen H, Li H, et al.Patch matching-based multitemporal group sparse representation for the missing information reconstruction of remote-sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(8):3629-3641.
[17] 李天祺, 朱秀芳, 潘耀忠, 等.环境星NDVI时间序列重构方法研究[J]. 遥感信息, 2015(1):58-65.
Li Tian-qi, Zhu Xiu-fang, Pan Yao-zhong, et al.NDVI time-series reconstruction methods of China's HJ satellite imagery[J]. Remote Sensing Information, 2015(1): 58-65.
[1] 于德新, 刘春宇, 郑坤, 郭亚娟, 赵鑫. 基于遥感图像的车辆空间占有率估计[J]. 吉林大学学报(工学版), 2016, 46(3): 764-769.
[2] 姜超, 耿则勋, 刘立勇, 潘映峰. 结合噪声去除的极大似然图像复原[J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[3] 李晖晖, 滑立, 杨宁, 刘坤. 基于MSA特征和模拟退火优化的遥感图像多目标关联算法[J]. 吉林大学学报(工学版), 2015, 45(4): 1353-1359.
[4] 王京萌, 张爱武, 赵宁宁, 孟宪刚. 斜采样的倾斜角度对采样产生混叠的影响及其与分辨率的关系[J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[5] 曹建农, 郭佳, 王蓓, 董昱威, 王平禄. 高分辨率影像中城区树冠多尺度聚类识别方法[J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224.
[6] 包磊, 徐其志. 基于PCA变换和光谱补偿的遥感影像融合方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88-91.
[7] 刘春香, 郭永飞, 李宁, 薛旭成, 吕恒毅. 多通道航天相机内部的图像实时合成压缩[J]. 吉林大学学报(工学版), 2013, 43(06): 1680-1684.
[8] 宋伟东, 戴激光, 李建军, 李健. 异源高分辨率卫星遥感影像配准新方法[J]. , 2012, (06): 1576-1580.
[9] 李树胜, 钟麦英. 基于PID的航空遥感三轴惯性稳定平台控制系统设计[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 275-279.
[10] 谭庆全,刘群,毕建涛,池天河. 面向Internet的分布式遥感影像切割算法[J]. 吉林大学学报(工学版), 2010, 40(01): 224-0228.
[11] 韩云霞,李民赞,李道亮 . 基于光谱学与遥感技术的矿区废弃地土壤特性参数分析[J]. 吉林大学学报(工学版), 2009, 39(01): 254-258.
[12] 何凯,赵红颖,刘晶晶 . 航空遥感影像渐晕复原方法[J]. 吉林大学学报(工学版), 2007, 37(06): 1447-1450.
[13] 杨玮,王秀,马伟,李民赞 . 基于近地光谱探测技术的冬小麦变量施肥[J]. 吉林大学学报(工学版), 2007, 37(06): 1455-1459.
[14] 陈浩,张磊,张晔 . 基于JPWL的遥感图像压缩传输错误保护[J]. 吉林大学学报(工学版), 2007, 37(06): 1441-1446.
[15] 张国敏,殷建平,祝恩,强永刚 . 遥感图像中基于视觉显著性的分层目标检测[J]. 吉林大学学报(工学版), 2007, 37(03): 625-0629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .