吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1215-1224.doi: 10.13229/j.cnki.jdxbgxb201404048

• • 上一篇    

高分辨率影像中城区树冠多尺度聚类识别方法

曹建农, 郭佳, 王蓓, 董昱威, 王平禄   

  1. 长安大学 地球科学与资源学院, 西安 710054
  • 收稿日期:2013-08-12 出版日期:2014-07-01 发布日期:2014-07-01
  • 作者简介:曹建农(1963-), 男, 教授, 博士.研究方向:图像理解, 遥感图像分析和地理信息系统. E-mail:caojiannong@126.com
  • 基金资助:
    国家自然科学基金项目(40971217); 地理信息工程国家重点实验室开放基金项目(SKLGIE2013-M-3-2)

Multi-scale method of urban tree canopy clustering recognition in high-resolution images

CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu   

  1. School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
  • Received:2013-08-12 Online:2014-07-01 Published:2014-07-01

摘要: 提出一种约束均值漂移方法, 对高分辨率影像中的城区树冠进行提取。该方法首先进行小波分解, 建立小波金字塔结构, 用特定窗口, 对每一层小波的低频系数计算均值, 同时对其高频系数计算标准偏差, 在每一层, 用这些均值和标准偏差构成特征空间, 最终构成多尺度金字塔影像特征空间;然后, 从金字塔顶层开始, 逐层进行均值漂移计算, 并在层间进行尺度传递, 由于尺度传递可能造成特征空间更加不平滑, 所以本文采用约束均值漂移方法进行聚类, 实现城区树冠初步聚类分割。最后, 由于特征空间的特征可区分性很难保证在区域边缘处的聚类精确性, 所以本文进一步采用基于聚类特征的监督分割方法提取树冠。实验结果表明, 与传统的直接监督方法以及非监督方法相比, 该方法能较好地消除高分辨率导致的影像高度细节化等因素对城区树冠提取的影响, 具有很强的实用性。 方法

关键词: 摄影测量与遥感技术, 影像分割, 高分辨率影像, 约束均值漂移, 小波

Abstract: A constrained mean shift method for extracting urban tree canopy of high-resolution images is presented. First, a wavelet is decomposed and a layered pyramid structure is established. Using a specific window, the mean of the low-frequency coefficient and the standard deviation of the high-frequency coefficient of each wavelet layer are computed. The computed mean and standard deviation are used to constitute a feature space in each layer; a multi-scale pyramid image feature space is constituted. Second, from the top of the pyramid, the mean shift of each layer is computed from the top layer of the pyramid, and the scale transfer between layers is carried out. The scale transfer may cause the feature space even more unsmooth, so a constrained mean shift method is adopted to realize preliminary urban tree canopy clustering segmentation. Finally, as the distinction of features in a feature space is difficult to guarantee the clustering accuracy at the edge, a further supervised segmentation method based on clustering features is taken to extract the tree canopy. Experiment results demonstrate that compared with traditional supervised methods and unsupervised methods, the proposed method can eliminate the effects of over-detailed images and other factors caused by high-resolution on extracting urban tree canopy.

Key words: photogrammetry and remote sensing technology, image segmentation, high-resolution images, constrained mean shift, wavelet

中图分类号: 

  • P237
[1] 周一凡, 周坚华. 绿量快速测算模式[J].生态学报, 2006, 26(12):4204-4212. Zhou Yi-fan, Zhou Jian-hua. Fast method to detect and calculate LVV[J]. Acta Ecologica Sinica, 2006, 26 (12): 4204-4212.
[2] Müllerová J J, Pergl J, Pyšek P. Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)[J].International Journal of Applied Earth Observation and Geoinformation, 2013, 25:55-65.
[3] 覃先林, 李增元, 易浩若. 高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用, 2005, 20(2): 228-232. Qin Xian-lin, Li Zeng-yuan, Yi Hao-ruo. Extraction method of tree crown using high-resolution satellite image[J]. Remote Sensing Technology and Application, 2005, 20(2): 228-232.
[4] Chang A, Eo Y, Kim Y, et al. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering[J]. Remote Sensing Letters, 2013, 4(1):29-37.
[5] Myint S W, Lam N S N, Tylor J M. Wavelets for urban spatial feature discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(7): 803-812.
[6] 王爽, 夏玉, 焦李成, 基于均值漂移的自适应纹理影像分割方法[J].软件学报, 2010, 21(6):1451-1461. Wang Shuang, Xia Yu, Jiao Li-chen. Mean shift based adaptive texture image segmentation method[J]. Journal of Software, 2010, 21(6): 1451-1461.
[7] Cheng Y Z. Mean shift, mode seeking, and clustering[J]. Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
[8] Dorin C, Peter M. Distribution free decomposition of multivariate data[J]. Pattern Analysis and Applications, 1999, 2(1): 22-30.
[9] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
[10] Sheather S, Jones M. A reliable data-based bandwidth selection method for kernel density estimation[J]. Journal of the Royal Statistical Society: Serious B, 1991, 53(3): 683-690.
[11] Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection[C]∥Proceedings 8th IEEE International Conference on Computer Vision, Stoughton: The Printing House, 2001: 438-445.
[12] Liang K H, Tjahjadi T. Adaptive scale fixing for multiscale texture segmentation[J]. IEEE Transaction on Image Processing, 2006, 15(1): 249-256.
[13] Freixenet J, Muñoz X, Raba D, et al. Yet another survey on image segmentation: region and boundary information integration[C]∥The 7th European Conference on Computer Vision, Copenhagen, Berlin: Springer, 2002: 408-422.
[14] 蒲智, 刘萍, 杨辽, 等. 城市绿地信息提取中的遥感影像阴影校正[J].北京林业大学学报, 2009, 31(2):80-85. Pu Zhi, Liu Ping, Yang Liao, et al. Shadow rectification of remote sensing images in information extraction for urban green space[J]. Journal of Beijing Forestry University, 2009, 31(2): 80-85.
[1] 刘海鸥, 张国鑫, 席军强, 张洪彦, 徐宜. 履带车辆传动系统动态载荷谱信号去噪[J]. 吉林大学学报(工学版), 2017, 47(1): 42-49.
[2] 车翔玖, 梁森. 一种基于大顶堆的SPIHT改进算法[J]. 吉林大学学报(工学版), 2016, 46(3): 865-869.
[3] 季彦婕, 陈晓实, 王炜, 胡波. 基于小波变换和粒子群小波神经网络组合模型的有效停车泊位短时预测[J]. 吉林大学学报(工学版), 2016, 46(2): 399-405.
[4] 莫愁, 陈吉清, 兰凤崇. 逆子结构传递路径分析方法[J]. 吉林大学学报(工学版), 2015, 45(6): 1751-1756.
[5] 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[6] 孙淑琴, 孟庆云, 方秀成, 林君, 王应吉, 田宝凤, 杨楠. 基于自适应和小波模极大值重构的地面核磁共振信号噪声压制方法[J]. 吉林大学学报(工学版), 2015, 45(5): 1642-1651.
[7] 李晖晖, 滑立, 杨宁, 刘坤. 基于MSA特征和模拟退火优化的遥感图像多目标关联算法[J]. 吉林大学学报(工学版), 2015, 45(4): 1353-1359.
[8] 姜超, 耿则勋, 刘立勇, 潘映峰. 结合噪声去除的极大似然图像复原[J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[9] 王京萌, 张爱武, 赵宁宁, 孟宪刚. 斜采样的倾斜角度对采样产生混叠的影响及其与分辨率的关系[J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[10] 路伟涛, 杨文革, 洪家财. 改进的小波空域相关滤波算法[J]. 吉林大学学报(工学版), 2015, 45(3): 1005-1011.
[11] 孙晓东,权爱娟,李勇. 复杂噪声背景下谐波信号频率估计新方法[J]. 吉林大学学报(工学版), 2015, 45(2): 653-657.
[12] 王昕, 李玮琳, 刘富. 小波域CT/MRI医学图像融合新方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 25-28.
[13] 夏英杰, 李金屏, 陈瑞. 基于变电站多模图像的自动集成配准方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 47-50.
[14] 张久文, 米进财, 张同峰. 基于双树复小波和广义高斯密度的纹理图像检索[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 60-63.
[15] 陈万忠, 孙保峰, 高韧杰, 雷俊. 基于NNE技术的手臂运动模式识别算法研究[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!