吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (4): 1307-1319.doi: 10.13229/j.cnki.jdxbgxb20180371
• • 上一篇
Xiong-fei LI1,2(),Lu SONG2,Xiao-li ZHANG1()
摘要:
针对多源遥感图像的融合问题,提出了一种基于协同经验小波变换的遥感图像融合方法。该算法首先对多源图像进行主成分分析获得共像;然后,对共像的强度分量做经验小波变换获得滤波器组;再利用这组滤波器对多光谱图像的强度分量和全色图像进行多尺度表示;最后经逆变换得到融合图像。该算法因采用协同自适应分解方法,有利于源图像高频与低频信息的分离,有效提高了遥感融合图像的清晰度。通过使用QuickBird卫星数据验证了算法的有效性,视觉感知和客观评价标准均表明该算法比其他同类算法有更好的优越性。
中图分类号:
1 | Ghassemian H . A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32(PA):75-89. |
2 | Yang Y , Wan W , Huang S , et al . Remote sensing image fusion based on adaptive IHS and multiscale guided filter[J]. IEEE Access, 2017, 4:4573-4582. |
3 | Leung Y , Liu J , Zhang J . An Improved Adaptive Intensity–Hue–Saturation Method for the Fusion of Remote Sensing Images[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(5):985-989. |
4 | Zhang Y , Hong G . An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images[J]. Information Fusion, 2005, 6(3):225-234. |
5 | Shah V P , Younan N H , King R L . An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(5):1323-1335. |
6 | 陶旭婷, 和红杰, 陈帆,等 . 基于局部相关性的遥感图像全色锐化算法[J]. 光子学报, 2014, 43(3):310003. |
Tao Xu-ting , He Hong-jie , Chen Fan , et al . Panchromatic sharpening algorithm based on local correlation for remote sensing images[J]. Acta Photonica Sinica, 2014, 43(3): 310003. | |
7 | Pajares G , Cruz J M D L . A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9):1855-1872. |
8 | 包磊, 徐其志 . 基于PCA变换和光谱补偿的遥感影像融合方法[J]. 吉林大学学报:工学版, 2013,33(增刊1):88-91. |
Bao Lei , Xu Qi-zhi . Spectrum-keeping algorithm for fusing based on PCA[J]. Journal of Jilin University(Engineering and Technology Edition), 2013,33(Supl.1):88-91. | |
9 | 李光鑫, 王珂 . 基于Contourlet变换的彩色图像融合算法[J]. 电子学报, 2007, 35(1):112-117. |
Li Guang-xin , Wang Ke . Color image fusion algorithm Based on contourlet transform[J]. Chinese Journal of Electronics, 2007, 35(1):112-117. | |
10 | Kong W W , Lei Y J , Lei Y , et al . Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network[J]. Iet Image Processing, 2011, 5(2):113-121. |
11 | Fu L , Liao Y , Xin L . Image fusion based on nonsubsampled contourlet transform and pulse coupled neural networks[C]⫽Fourth International Conference on Intelligent Computation Technology and Automation, IEEE Computer Society, 2011:572-575. |
12 | Ghahremani M , Ghassemian H . Remote-sensing image fusion based on curvelets and ICA[J]. International Journal of Remote Sensing, 2015, 36(16):4131-4143. |
13 | Biswas B , Dey A , Dey K N . Remote sensing image fusion using statistical univariate finite mixture model in shearlet domain[C]⫽International Conference on Advances in Computing, Communications and Informatics. IEEE, 2015:2186-2191. |
14 | Biswas B , Dey K N , Chakrabarti A . Remote sensing image fusion using multithreshold Otsu method in shearlet domain[J]. Procedia Computer Science, 2015, 57:554-562. |
15 | Liu Y , Wang Z . A practical pan-sharpening method with wavelet transform and sparse representation[C]⫽IEEE International Conference on Imaging Systems and Techniques, IEEE, 2014:288-293. |
16 | Cheng J , Liu H , Liu T , et al . Remote sensing image fusion via wavelet transform and sparse representation[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 104:158-173. |
17 | Metwalli M R , Nasr A H , Allah O S F , et al . Image fusion based on principal component analysis and high-pass filter[C]⫽International Conference on Computer Engineering & Systems,IEEE, 2010: 63-70. |
18 | Gangkofner U G , Pradhan P S , Holcomb D W . Optimizing the high-Pass filter addition technique for Image fusion[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(74):1107-1118. |
19 | Li W , Hu X , Du J , et al . Adaptive remote-sensing image fusion based on dynamic gradient sparse and average gradient difference[J]. International Journal of Remote Sensing, 2017, 38(23):7316-7332. |
20 | Wang Q , Meng Z , Li X . Locality adaptive discriminant analysis for spectral–spatial classification of hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(11):2077-2081. |
21 | Gilles J . Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010. |
22 | 陈善学,唐义嫄 .基于混沌系统的RGB彩色图像三重置乱算法[J].重庆邮电大学学报:自然科学版,2018,30(6):812-818. |
Chen Shan-xue , Tang Yi-yuan . Triple scrambling algorithm for RGB color image based on chaotic system[J]. Chongqing University of Posts and Telecommunications(Natural Science Edition), 2018,30(6):812-818. | |
23 | Gilles J , Tran G , Osher S . 2D empirical transforms. wavelets, ridgelets and curvelets revisited[J]. Siam Journal on Imaging Sciences, 2014, 7(7): 157-186. |
24 | 刘磊, 张红, 王莎 . 基于小波变换的全局能量图像融合算法[J]. 吉林大学学报:工学版, 2009,39(增刊1):232-236. |
Liu Lei , Zhang Hong , Wang Sha . Global energy image fusion algorithm based on wavelet transform[J]. Journal of Jilin University(Engineering and Technology Edition), 2009,39(Supl.1):232-236. |
[1] | 王楠,李金宝,刘勇,张玉杰,钟颖莉. TPR⁃TF:基于张量分解的时间敏感兴趣点推荐模型[J]. 吉林大学学报(工学版), 2019, 49(3): 920-933. |
[2] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[3] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[4] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[5] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[6] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[7] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[8] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[9] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[10] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[11] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[12] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[13] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[14] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[15] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
|