吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (4): 1363-1368.doi: 10.13229/j.cnki.jdxbgxb20180844

• • 上一篇    

基于遗传粒子群优化算法的认知无线电系统功率分配

王宏志(),姜方达,周明月   

  1. 长春工业大学 计算机科学与工程学院,长春 130012
  • 收稿日期:2018-07-03 出版日期:2019-07-01 发布日期:2019-07-16
  • 作者简介:王宏志(1961?),男,教授,博士.研究方向:数字信号处理及应用,图像处理.E?mail:wanghongzhi@ccut.edu.cn.
  • 基金资助:
    国家自然科学基金项目(61501059);吉林省教育厅项目(2016343);吉林省教育厅“十三五”科学技术研究项目(JJKH20191292KJ)

Power allocation of cognitive radio system based on genetic particle swarm optimization

Hong⁃zhi WANG(),Fang⁃da JIANG,Ming⁃yue ZHOU   

  1. School of Computer Science and Engineering, Changchun University of Technology, Changchun130012, China
  • Received:2018-07-03 Online:2019-07-01 Published:2019-07-16

摘要:

考虑授权用户的干扰功率阈值和认知用户的信干噪比(Signal to interference plus noise ratio,SINR)要求,提出了一种基于遗传思想的粒子群优化(Genetic particle swarm optimization,GPSO)算法,研究认知用户发射功率最小化的问题。GPSO算法在适应度值计算、速度更新和位置更新阶段引入选择、交叉和变异操作。仿真结果表明,与拉格朗日乘子法和粒子群优化(Particle swarm optimization,PSO)算法相比,GPSO算法降低了发射功率并获得了更高的SINR。

关键词: 通信技术, 认知无线电网络, 功率控制, 粒子群优化算法, 遗传算法

Abstract:

Considering the requirements of the interference power threshold for the primary users and the signal to interference plus noise ratio (SINR) for the secondary users, this paper proposes a particle swarm optimization based on genetic thought, namely genetic particle swarm optimization (GPSO). This scheme studies the issue of minimizing secondary users' transmit power in the CRN. The GPSO algorithm introduces selection, crossover, and mutation operations in the fitness value calculation, speed update, and location update phases. Compared with the Lagrange multiplier method and PSO, the GPSO algorithm reduces the transmit power and obtains a higher SINR.

Key words: communication technology, cognitive radio networks, power control, particle swarm optimization(PSO) algorithm, genetic algorithm

中图分类号: 

  • TN929.5

图1

本文算法流程图"

图2

SU的发射功率与迭代次数的关系"

图3

SU的SINR与迭代次数的关系"

图4

SU的传输速率与迭代次数的关系"

1 Chen S , Alemseged Y D , Ha N T , et al . Power control of cognitive radio system in rayleigh fading[C]∥IEEE Global Telecommunications Conference, Honolulu, HI, USA, 2009: 319⁃324.
2 Haykin S . Cognitive radio: brain⁃empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201⁃220.
3 Qu Y , Wang M , Hu J . A new energy⁃efficient scheduling algorithm based on particle swarm optimization for cognitive radio networks[C]∥Proceedings of IEEE International Conference on Signal Processing, Communications and Computing, Guilin, China, 2014: 467⁃472.
4 Gkionis G , Sgora A , Vergados D D , et al . An effective spectrum handoff scheme for cognitive radio ad hoc networks[C]∥Proceedings of Wireless Telecommunications Symposium, Chicago, IL, 2017: 1⁃7.
5 Mahdi A H , Mohanan J , Kalil M A , et al . Adaptive discrete particle swarm optimization for cognitive radios[C]∥Proceedings of IEEE International Conference on Communications, Ottawa, Canada, 2012: 6550⁃6554.
6 Zhao Z , Xu S , Zheng S , et al . Cognitive radio adaptation using particle swarm optimization[J]. Wireless Communications and Mobile Computing, 2009, 9(7): 875⁃881.
7 Sun J , Palade V , Wu X J , et al . Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization[J]. IEEE Transactions on Industrial Informatics, 2013, 10(1): 222⁃232.
8 Gesbert D , Hanly S , Huang H , et al . Multi⁃cell mimo cooperative networks: a new look at interference[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(9): 1380⁃1408.
9 Zhang Q , Wan P , Wang Y , et al . A spectrum allocation method based on random drift swarm optimization algorithm[C]∥Proceedings of International Conference on Communication Software and Networks, Guangzhou, China, 2017: 289⁃295.
10 栾磊, 赵晓晖, 徐勇军 . 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报:工学版, 2016, 46(4): 1304⁃1312.
Luan Lei , Zhao Xiao⁃hui , Xu Yong⁃jun . Spectrum sensing model of region⁃oriented cognitive radio system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1304⁃1312.
11 Zhang H , Nie Y , Cheng J , et al . Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 730⁃743.
12 Zhang E , Chen Q . Multi⁃objective reliability redundancy allocation in an interval environment using particle swarm optimization[J]. Reliability Engineering and System Safety, 2016, 145:83⁃92.
13 Wang B , Wang S , Zhou X Z , et al .Two⁃stage multi⁃objective unit commitment optimization under hybrid uncertainties[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2266⁃2277.
14 Ratnaweera A , Halgamuge S K , Watson H C . Self⁃organizing Hierarchical Particle Swarm Optimizer with Time⁃varying Acceleration Coefficients[M]. New York: IEEE Press, 2004.
15 Tiwari P , Saha S . Co⁃channel interference constrained spectrum allocation with simultaneous power and network capacity optimization using PSO in cognitive radio network[C]∥Proceedings of IEEE International Conference on Advanced Networks and Telecommunications Systems, Kolkata, India, 2016:1⁃3.
16 Tuan P V , Koo I . Robust weighted sum harvested energy maximization for SWIPT cognitive radio networks based on particle swarm optimization[J]. Sensors, 2017, 17(10): 2275.
17 Lobiyal D K , Katti C P , Giri A K . Parameter value optimization of Ad⁃hoc on demand multipath distance vector routing using particle swarm optimization[J]. Procedia Computer Science, 2015, 46: 151⁃158.
18 Starke S , Hendrich N , Magg S , et al . An efficient hybridization of genetic algorithms and particle swarm optimization for inverse kinematics[C]∥Proceedings of IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 2017: 1782⁃1789.
[1] 刘勇,邓方顺,刘小林,闵思婕,王鹏. 基于双混沌振子的最小频移键控信号频率估计方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1357-1362.
[2] 吴蔚楠,崔乃刚,郭继峰,赵杨杨. 多异构无人机任务规划的分布式一体化求解方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1827-1837.
[3] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[4] 焦玉玲, 张鹏, 田广东, 邢小翠, 邹连慧. 基于多种群遗传算法的自动化立体库货位优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1398-1404.
[5] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[6] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[7] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[8] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[9] 李启良, 曹冠宁, 李璇, 杨志刚, 钟立元. 三厢轿车多参数气动优化[J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[10] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[11] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[12] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[13] 孙文, 王庆年, 王军年. 基于横摆力矩控制的电动轮汽车转弯节能控制[J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[14] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[15] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!