吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1726-1734.doi: 10.13229/j.cnki.jdxbgxb20180366
• • 上一篇
Ji-chang GUO(),Jie WU,Chun-le GUO,Ming-hui ZHU
摘要:
针对基于卷积神经网络超分辨率重构算法中存在的感受野较小、梯度信息易丢失与网络收敛较慢等问题,提出了基于残差连接卷积神经网络的图像超分辨率重构算法。通过在低分辨率空间进行图像的超分辨率重构,减少了图像预处理过程,降低了网络复杂度。利用局部和全局残差连接,对卷积网络结构和亚像素采样层进行改进,局部残差促进了网络中信息的流动,全局残差使网络只学习图像残差信息,减少了网络冗余。通过增加网络深度扩大了感受野,使网络学习到更多的重建信息。实验结果表明:本文算法的PSNR和SSIM值相较于其他算法有不同程度的提升。
中图分类号:
1 | Tsai R Y , Huang T S . Multiframe image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1(2): 317-339. |
2 | Peleg S , Keren D , Schweitzer L . Improving image resolution using subpixel motion[J]. Pattern Recognition Letters, 1987, 5(3): 223-226. |
3 | Schultz R R , Stevenson R L . Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996-1011. |
4 | Freeman W T , Jones T R , Pasztor E C . Example-based super-resolution[J]. IEEE Computer Graphics & Applications, 2002, 22(2): 56-65. |
5 | 薛翠红, 于明, 杨宇皓, 等 . 基于学习的马尔科夫超分辨率复原[J]. 吉林大学学报: 工学版, 2013, 43(增刊1): 406-409. |
Xue Cui-hong , Yu Ming , Yang Yu-hao , et al . MRF reconstruction based on Markov network[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(Sup.1): 406-409. | |
6 | 徐岩, 孙美双 . 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报: 工学版, 2018, 48(6): 1895-1903. |
Xu Yan , Sun Mei-shuang . Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903. | |
7 | 马淼, 李贻斌 . 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报: 工学版, 2017, 47(4): 1244-1252. |
Ma Miao , Li Yi-bin . Multi-level image sequences and convolutional neural networks based human action recognition method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1244-1252. | |
8 | Dong C , Chen C L , He K , et al . Learning a deep convolutional network for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 184-199. |
9 | Dong C , Loy C C , Tang X . Accelerating the super-resolution convolutional neural network[C]∥European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 391-407. |
10 | Shi W , Caballero J , Huszár F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1874-1883. |
11 | Kim J , Lee J K , Lee K M . Accurate image super-resolution using very deep convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1646-1654. |
12 | Kim J , Kwon Lee J , Mu Lee K . Deeply-recursive convolutional network for image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1637-1645. |
13 | Justin J , Alexandre A , Li F F . Perceptual losses for real-time style transfer and super-resolution[C]∥European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 694-711. |
14 | Ledig C , Wang Z , Shi W , et al . Photo-realistic single image super-resolution using a generative adversarial network[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE Computer Society, 2017: 105-114. |
15 | Cui Z , Chang H , Shan S , et al . Deep network cascade for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 49-64. |
16 | Mao X J , Shen C , Yang Y B . Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J]. Advances in Neural Information Processing Systems, 2016(2): 2810-2818. |
17 | Wang Y F , Wang L J , Wang H Y , et al . End-to-end image super-resolution via deep and shallow convolutional networks[J]. IEEE Access, 2016(7): 959-970. |
18 | He K , Zhang X , Ren S , et al . Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 770-778. |
19 | Nah S , Kim T H , Lee K M . Deep multi-scale convolutional neural network for dynamic scene deblurring[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE Computer Society, 2017: 257-265. |
[1] | 卢洋,王世刚,赵文婷,赵岩. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1715-1725. |
[2] | 董超,刘晶红,徐芳,王仁浩. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1369-1376. |
[3] | 王柯俨,胡妍,王怀,李云松. 结合天空分割和超像素级暗通道的图像去雾算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1377-1384. |
[4] | 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985. |
[5] | 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999. |
[6] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[7] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[8] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[9] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[10] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[11] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[12] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[13] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[14] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[15] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
|