吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 1871-1883.doi: 10.13229/j.cnki.jdxbgxb20180686

• • 上一篇    下一篇

多跨长联连续梁桥粘滞阻尼器参数敏感性分析

贾毅1(),赵人达1,王永宝1,李福海1,2()   

  1. 1. 西南交通大学 土木工程学院,成都 610031
    2. 陆地交通地质灾害防治技术国家工程实验室,成都 610031
  • 收稿日期:2018-07-01 出版日期:2019-11-01 发布日期:2019-11-08
  • 通讯作者: 李福海 E-mail:jiayi0715vip@sina.com;qixingye2003@163.com
  • 作者简介:贾毅(1988-),男,博士研究生. 研究方向:桥梁抗震与减隔震. E-mail:jiayi0715vip@sina.com
  • 基金资助:
    国家重点研发计划项目(2016YFB1200401);国家自然科学基金项目(51308471);广东省交通厅科技计划项目(2014-02-015)

Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges

Yi JIA1(),Ren-da ZHAO1,Yong-bao WANG1,Fu-hai LI1,2()   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031,China
    2. National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation, Chengdu 610031,China
  • Received:2018-07-01 Online:2019-11-01 Published:2019-11-08
  • Contact: Fu-hai LI E-mail:jiayi0715vip@sina.com;qixingye2003@163.com

摘要:

为从有利于减小固定墩地震响应的角度探讨适用于多跨长联连续梁桥的减震措施,以韩江大桥主桥(55+4×90+55)m为工程背景,研究了粘滞阻尼器对该桥抗震性能的影响。基于有限元软件ANSYS建立了全桥动力分析模型;采用Maxwell模型模拟粘滞阻尼器的力学行为;选取3条50年超越概率为2.5%的人工地震波作为地震动输入,并利用非线性动力时程分析方法,对粘滞阻尼器的力学参数速度指数α和阻尼系数C进行了参数敏感性分析;最后,将分析结果与未设置粘滞阻尼器模型的地震响应进行对比分析。分析结果表明:粘滞阻尼器在地震作用下形成了饱满、封闭的滞回环,该滞回环形状规则且包络面积较大,耗能效果良好;固定墩墩底内力和墩顶位移随着阻尼系数的增加而减小,随着速度指数的增加而增大;综合考虑粘滞阻尼器的减震效果,建议本桥粘滞阻尼器力学参数为:速度指数α取0.4,阻尼系数C取4 000 kN/(m?s-1)0.4 ;与未采用粘滞阻尼器模型相比,固定墩墩底弯矩和剪力平均减震率分别为44.35%、42.52%。固定墩承受的总体水平地震荷载也降低了25%左右,并且所有桥墩承担水平地震荷载也更加均匀,所有桥墩受力更加合理。此外,还防止或减轻了上部结构顺桥向之间的碰撞以及避免了落梁震害的发生。

关键词: 桥梁工程, 多跨长联连续梁桥, 非线性动力时程分析, 减震设计, 粘滞阻尼器, 力学参数, 敏感性分析

Abstract:

From the aspect of reducing seismic response of fixed pier, the vibration absorption measures of multi-span and long-unit continuous girder bridge were exploded. Taking the main bridge of Hanjiang Bridge with the span of 55+4×90+55 m as an engineering background, the seismic performance of the bridge influenced by viscous damper were studied. The finite element model for dynamic analysis of the bridge was established based on ANSYS. The mechanical behavior of viscous damper was simulated by Maxwell Model. Three artificial seismic waves with the exceedance probability of 2.5% in 50 years were chosen as the earthquake excitation. By using nonlinear dynamic time history analysis method, the parameter sensitivity analysis on velocity exponent α and damping coefficient C of the viscous damper was investigated. At last, the results were compared with the seismic response without considering the viscous damper model. All the results shown that saturated and closed lag circle of viscous damper under the action of earthquake was formed; The lag circle has regular shape, large envelope area, so that the energy dissipation effect had been proved successful. The internal force of bottom of fixed pier and displacement of top of fixed pier decreased with the increase of damping coefficient. And they also increased with the increase of velocity index. The velocity exponent α and damping coefficient C of the viscous damper were recommended as 0.4 and 4000 kN/(m?s-1)0.4 by considering the damping effect of viscous damper. Compared with the model without viscous damper, the bending moment and shearing average damping rate of the fixed pier were 44.35% and 42.52%, respectively. The overall horizontal seismic load on the fixed pier was also reduced by about 25%, and all piers bear more uniform horizontal seismic load, the load of all piers were more reasonable. In addition, it also prevents or reduces the collision between the superstructure along the bridge direction. And the fall-beam destruction in the earthquake is avoided.

Key words: bridge engineering, multi-span and long-unit continuous girder bridge, non-linear dynamic time-history analysis, seismic mitigation design, viscous damper, mechanical parameter, sensitivity analysis

中图分类号: 

  • U448.21

图1

韩江特大桥立面布置(单位:cm)"

图2

有限元分析模型"

表1

10号桩基各土层弹性系数"

深度/m m /(kN·m-4 m/(kN·m-4 顺桥向/(kN·?m-1 横桥向/(kN·m-1
9.249 10 000 25 000 1 166 408.6 1 166 408.6
11.249 10 000 25 000 14 49 208.6 1 449 208.6
13.249 10 000 25 000 1 732 008.6 1 732 008.6
15.249 10 000 25 000 2 014 808.6 2 014 808.6
17.249 10 000 25 000 2 297 608.6 2 297 608.6
19.249 10 000 25 000 2 580 408.6 2 580 408.6
21.249 20 000 50 000 5 726 417.2 5 726 417.2
23.249 5 000 12 500 1 573 004.3 1 573 004.3
25.249 12 000 30 000 4 114 570.3 4 114 570.3
27.249 20 000 50 000 7 423 217.2 7 423 217.2
31.249 20 000 50 000 16 543 234.4 17 108 834.4
35.249 20 000 50 000 18 805 634.4 19 371 234.4
39.249 20 000 50 000 21 068 034.4 21 633 634.4
43.249 20 000 50 000 23 330 434.4 23 896 034.4
47.249 20 000 50 000 25 592 834.4 26 158 434.4
51.249 20 000 50 000 27 855 234.4 28 420 834.4
55.249 20 000 50 000 30 117 634.4 30 683 234.4
59.249 20 000 50 000 32 380 034.4 32 945 634.4
63.249 20 000 50 000 34 642 434.4 35 208 034.4
67.249 20 000 50 000 36 904 834.4 37 470 434.4
71.249 20 000 50 000 39 167 234.4 39 732 834.4
75.249 20 000 50 000 41 429 634.4 41 995 234.4
79.249 20 000 50 000 43 692 034.4 44 257 634.4

表2

加速度反应谱参数"

超越概率水准 T g(s) γ S max(g)
50年2.5% 0.85 1.000 0.65

图3

人工拟合地震波"

图4

人工地震波拟合反应谱与设计规准反应谱比较"

图5

矩形截面条带划分及应力、应变分布"

图6

弯矩曲率分析流程图"

图7

桥墩截面的骨架曲线"

图8

墩底截面弯矩曲率曲线及等效双折线模型"

图9

液体粘滞阻尼器动力特性曲线"

图10

Maxwell模型"

图11

COMBIN37单元力学模型"

表3

粘滞阻尼器力学参数优化分析工况"

工况 速度指数 阻尼系数/ [kN·(m·s–1)α]
1 0.2 1000
2 0.4 1000
3 0.6 1000
4 0.8 1000
5 1.0 1000
6 0.2 2000
7 0.4 2000
8 0.6 2000
9 0.8 2000
10 1.0 2000
11 0.2 3000
12 0.4 3000
13 0.6 3000
14 0.8 3000
15 1.0 3000
16 0.2 4000
17 0.4 4000
18 0.6 4000
19 0.8 4000
20 1.0 4000
21 0.2 5000
22 0.4 5000
23 0.6 5000
24 0.8 5000
25 1.0 5000

图12

12号桥墩内力响应随阻尼器参数变化"

图13

桥墩位移响应随阻尼器参数的变化"

图14

桥10号桥墩处阻尼器响应随阻尼参数器的变化"

图15

不同工况下结构响应的相对减震率"

图16

12号桥墩墩底顺桥向内力时程曲线"

图17

位移时程曲线"

图18

液体粘滞阻尼器滞回曲线"

表4

桥墩内力响应结果及相对减震率"

墩号 墩底顺桥向弯矩值/105(kN·m) 墩底顺桥向剪力值/104 kN
有阻尼器 无阻尼器 相对减震率/% 有阻尼器 无阻尼器 相对减震率/%
9 0.279 0.332 15.96 0.164 0.213 23.00
10 1.061 0.275 -285.82 0.762 0.261 -191.95
11 1.375 2.560 46.29 0.591 1.070 44.77
12 1.506 2.710 44.43 0.636 1.100 42.18
13 1.655 2.870 42.33 0.677 1.140 40.61
14 1.369 0.573 -138.92 0.545 0.301 -81.06
15 0.419 0.397 -5.54 0.200 0.190 -5.26

表5

桥墩位移响应结果及相对减震率"

墩号 墩顶顺桥向位移值/mm

墩梁顺桥向相对位

移值/mm

有阻尼器 无阻尼器 相对减震率/% 有阻尼器 无阻尼器 相对减震率/%
9 117 139 15.83 205 368 44.29
10 83 27 -207.41 124 317 60.88
11 165 310 46.77 0 0 /
12 169 306 44.77 0 0 /
13 174 302 42.38 0 0 /
14 148 59 -150.85 65 287 77.35
15 231 218 -5.96 224 374 40.11
1 王克海 . 桥梁抗震研究[M]. 2版.北京:中国铁道出版社, 2014.
2 张常勇, 王志英, 王宏博 . 长联大跨连续钢桁梁桥减隔震设计研究[J]. 公路交通科技, 2015, 32(8): 80-88.
2 Zhang Chang-yong , Wang Zhi-ying , Wang Hong-bo . Study on seismic mitigation and isolation design for a long-span continuous steel truss beam bridge[J]. Journal of Highway and Transportation Research and Development, 2015, 32(8): 80-88.
3 杨喜文, 李建中, 雷昕弋 . 多孔大跨度连续梁桥减隔震技术应用研究[J]. 中国公路学报, 2010, 23(6): 58-65.
3 Yang Xi-wen , Li Jian-zhong , Lei Xin-yi . Research on application of seismic isolation techniques to multiple and large-span continuous girder bridge[J]. China Journal of Highway and Transport, 2010, 23(6): 58-65.
4 Priestly M J N , Seible F , Calvi G M . Seismic design and retrofit of bridges[M]. New York: John Wiley and Sons, 1996: 12-29.
5 王志强, 胡世德, 范立础 . 东海大桥粘滞阻尼器参数研究[J]. 中国公路学报, 2005, 18(3): 37-42.
5 Wang Zhi-qiang , Hu Shi-de , Fan Li-chu . Research on viscous damper parameters of donghai bridge[J]. China Journal of Highway and Transport, 2005, 18(3): 37-42.
6 Martinez M , Rodrigo M , Romero M L . An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications[J]. Engineering Structure, 2003, 25(7): 913-925.
7 Pekcan G , Mander J B , Chen S S . Fundamental consideration for the design of nonlinear viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 1999, 28(11): 1405-1425.
8 Lin W H , Anil K C . Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(9): 1623-1642.
9 Nicos M , Constantinous M C , Dargush G F . Analytical model of viscoelastic fluid dampers[J]. Journal of Structural Engineering, 1993, 119(11): 3310-3325.
10 张常勇, 王文斌, 姚宗健 . 大跨度斜拉桥顺桥向阻尼约束体系研究[J]. 桥梁建设, 2014, 44(6): 75-80.
10 Zhang Chang-yong , Wang Wen-bin , Yao Zong-jian . Study of longitudinal damping restraint systems for a long span cable-stayed bridge[J]. Bridge Construction, 2014, 44(6): 75-80.
11 丁幼亮, 耿方方, 葛文浩,等 . 多塔斜拉桥风致抖振响应的粘滞阻尼器控制研究[J]. 工程力学, 2015, 32(4): 130-137.
11 Ding You-liang , Geng Fang-fang , Ge Wen-hao , et al . Control of wind-induced buffeting responses of a multi-tower cable-stayed bridge using viscous dampers[J]. Engineering Mechanics, 2015, 32(4): 130-137.
12 刘俊 . 高烈度区多跨刚构连续梁桥减隔震设计研究[J]. 铁道工程学报, 2013, 30(5): 40-46.
12 Liu Jun . Research on seismic isolation design of multi-span rigid frame-continuous girder bridge in high seismic intensity area[J]. Journal of Railway Engineering Society, 2013, 30(5): 40-46.
13 王波, 马长飞, 刘鹏飞,等 . 基于随机地震响应的斜拉桥粘滞阻尼器参数优化[J]. 桥梁建设, 2016, 46(3): 17-22.
13 Wang Bo , Ma Chang-fei , Liu Peng-fei , et al . Parameter optimization of viscous damper for cable-stayed bridge based on stochastic seismic responses[J]. Bridge Construction, 2016, 46(3): 17-22.
14 张文学, 黄荐, 王景景 . 斜拉桥面相对高度对粘滞阻尼器减震效果影响研究 [J]. 振动与冲击, 2015, 34(16): 43-47.
14 Zhang Wen-xue , Huang Jian , Wang Jing-jing . Effect of cable-stayed bridge’s relative height of deck on viscous damper’s seismic reduction behavior [J]. Journal of Vibration and Shock, 2015, 34(16): 43-47.
15 焦驰宇, 孙广龙, 陈永祁,等 . 液体粘滞阻尼器在市政桥梁抗震加固中的应用[J]. 工程力学, 2014, 31(增刊1): 177-181.
15 Jiao Chi-yu , Sun Guang-long , Chen Yong-qi , et al . Application of fluid viscous damper to seismic strengthening of municipal bridges[J]. Engineering Mechanics, 2014, 31(Sup.1): 177-181.
16 毛玉东, 李建中 . 大跨连续梁桥纵向减震机理和减震效果分析[J]. 同济大学学报:自然科学版, 2016, 44(2): 185-191.
16 Mao Yu-dong , Li jian-zhong . Analysis of seismic mitigation mechanism and effect on longitudinal direction of long-span continuous bridges[J]. Journal of Tongji University (Natural Science), 2016, 44(2): 185-191.
17 贾毅, 赵人达, 廖平, 等 . 高烈度地区多跨长联连续梁桥抗震体系研究[J]. 桥梁建设, 2017, 47(5): 41-46.
17 Jia Yi , Zhao Ren-da , Liao Ping , et al . Research on seismic system for multi-span and long-unit continuous girder bridge in high intensity region [J]. Bridge Construction, 2017, 47(5): 41-46.
18 恵迎新, 毛明杰, 刘海峰, 等 . 跨断层桥梁结构地震响应影响[J]. 吉林大学学报:工学版, 2018, 48(6): 1725-1734.
18 Hui Ying-xin , Mao Ming-jie , Liu Hai-feng , et al . Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jinlin University (Engineering and Technology Edition), 2018, 48(6): 1725-1734.
19 谢肖礼, 王波, 张伟峰, 等 . 罕遇地震作用下高墩连续刚构桥双重非线性抗震分析 [J]. 工程力学, 2009, 26(4): 113-118.
19 Xie Xiao-li , Wang Bo , Zhang Wei-feng , et al . Double nonlinear aseismic analysis of high-rise pier and rigid frame bridges under rear earthquake[J]. Engineering Mechanics, 2009, 26(4): 113-118.
20 禚一, 王菲 . 罕遇地震下城际铁路连续梁桥延性抗震设计[J]. 铁道工程学报, 2012, 29(4): 66-71,112.
20 Zhuo Yi , Wang Fei . Seismic ductility design for intercity railway continuous bridge under rare earthquake[J]. Journal of Railway Engineering Society, 2012, 29(4): 66-71,112.
21 JTG/T B02-01-2008. 公路桥梁抗震设计细则[S].
22 柳春光 . 桥梁结构地震响应与抗震性能分析[M]. 北京:中国建筑工业出版社, 2009.
23 何杰 . FVD 阻尼系数C和阻尼指数α 对桥梁减震效果影响研究[J]. 公路工程, 2012, 37(6): 89-92,96.
23 He Jie . Analysis of the influence of FVD damping coefficient C and damping exponent α on bridge seismic absorption effect[J]. Highway Engineering, 2012, 37(6): 89-92,96.
24 葛继平, 王志强 . 干接缝节段拼装桥墩集中塑性铰模型的地震响应分析[J]. 工程力学, 2010, 27(8): 185-190.
24 Ge Ji-ping , Wang Zhi-qiang . Seismic performance studies of segmental bridge columns with match-cast dry joints using concentrated plastic hinge method[J]. Engineering Mechanics, 2010, 27(8): 185-190.
25 刘怀林, 兰海燕 . Ansys 在大跨径桥梁阻尼器选型中的应用[J]. 公路交通技术, 2011(6): 44-48.
25 Liu Huai-lin , Lan Hai-yan . Application of Ansys in type selection of dampers for large-span bridges[J]. Technology of Highway and Transport, 2011(6): 44-48.
26 姜浩, 郭学东 . 基于地震激励的混凝土桥梁模态参数识别[J]. 吉林大学学报:工学版, 2011, 41(增刊2): 185-188.
26 Jiang Hao , Guo Xue-dong . Concrete bridge modal parameter identification under seismic excitations[J]. Journal of Jinlin University (Engineering and Technology Edition), 2011, 41(Sup.2): 185-188.
[1] 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890.
[2] 白伦华,沈锐利,张兴标,王路. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报(工学版), 2019, 49(5): 1500-1508.
[3] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[4] 赵金钢,张明,占玉林,谢明志. 基于塑性应变能密度的钢筋混凝土墩柱损伤准则[J]. 吉林大学学报(工学版), 2019, 49(4): 1124-1133.
[5] 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780.
[6] 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734.
[7] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[8] 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[9] 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[10] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[11] 张云龙, 刘占莹, 吴春利, 王静. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[12] 刘寒冰, 时成林, 谭国金. 考虑剪切滑移效应的叠合梁有限元解[J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[13] 谭国金, 刘子煜, 魏海斌, 王龙林. 偏心直线预应力筋简支梁自振频率计算方法[J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[14] 曹珊珊, 雷俊卿. 考虑区间不确定性的钢结构疲劳寿命分析[J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[15] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董云峰,曲兴田,沈传亮,董景石,吴博达 . 压电直接驱动式伺服阀
[J]. 吉林大学学报(工学版), 2006, 36(05): 678 -0680 .
[2] 张颖,段广仁,贺亮 . 一类含有时滞的离散切换系统鲁棒稳定性分析[J]. 吉林大学学报(工学版), 2006, 36(05): 740 -0744 .
[3] 宣兆志,李国辉,路佳,周放. 小波分析在CO2弧焊控制中的应用[J]. 吉林大学学报(工学版), 2006, 36(04): 480 -483 .
[4] 臧传义,马红安,田宇,肖宏宇,贾晓鹏. 利用不同籽晶面生长优质宝石级金刚石单晶[J]. 吉林大学学报(工学版), 2006, 36(01): 10 -0013 .
[5] 陈燕虹,刘宏伟,黄治国,张宝生. 基于空气悬架客车1/2模型的模糊控制仿真[J]. 吉林大学学报(工学版), 2005, 35(03): 254 -257 .
[6] 王树森,程永春,刘寒冰,李春良. 碳纤维与混凝土界面粘贴强度的精确测量方法[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 53 -0055 .
[7] 聂远飞,葛建华,王勇 . 非理想信噪比估计对Turbo均衡性能的影响[J]. 吉林大学学报(工学版), 2007, 37(04): 875 -880 .
[8] 王云鹏, 王占中, 鹿应荣, 钱小小. 基于数据仓库的多式联运物流决策支持系统[J]. 吉林大学学报(工学版), 2005, 35(06): 641 -0645 .
[9] 刘兰涛,陈晓光,吴文福,潘智 . 三波长谷物蛋白质近红外检测仪[J]. 吉林大学学报(工学版), 2009, 39(01): 93 -97 .
[10] 郑雅羽,田翔.陈耀武. 基于时空特征融合的视觉注意模型[J]. 吉林大学学报(工学版), 2009, 39(06): 1625 -1630 .