吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 289-296.doi: 10.13229/j.cnki.jdxbgxb20180902
• 计算机科学与技术 • 上一篇
Tie-jun WANG1,2(),Wei-lan WANG1,2()
摘要:
针对现有的图像自动标注算法对唐卡图像的自动标注和语义描述能力有限的缺点,提出了一种基于领域知识本体的唐卡图像语义标注方法。首先,构建了唐卡图像标注框架体系,然后,在前期唐卡图像中目标对象识别和分类的基础上,结合唐卡领域知识本体,对圣像类唐卡图像进行了两个层面的标注,即局部区域自动标注和基于本体的全局标注。实验结果表明,该标注方法对唐卡图像十分有效。
中图分类号:
1 | 钱建军. 基于语义的唐卡图像标注与检索研究[D].兰州:西北民族大学中国民族信息技术研究院,2010. |
Qian Jian-jun. A study on semantic-based thangka image annotation and retrieval[D]. Lanzhou:National Information Technology Research Institute,Northwest Minzu University,2010. | |
2 | 毕学慧, 刘华明, 王维兰. 基于头饰特征的唐卡标注和检索[J]. 计算机科学, 2014, 41(2): 312-316. |
Bi Xue-hui, Liu Hua-ming, Wang Wei-lan. Thangka annotation and retrieval based on headdress features[J]. Computer Science, 2014, 41(2): 312-316. | |
3 | 鲍泓, 徐光美, 冯松鹤, 等. 自动图像标注技术研究进展[J]. 计算机科学, 2011, 38(7): 35-40. |
Bao Hong, Xu Guang-mei, Feng Song-he. Advances in automatic image annotation[J]. Computer Science, 2011, 38(7): 35-40. | |
4 | Zhang D, Islam M M, Lu G. A review on automatic image annotation techniques[J]. Pattern Recognition, 2012, 45(1): 346-362. |
5 | 李志欣, 施智平, 张灿龙, 等. 混合生成式和判别式模型的图像自动标注[J]. 中国图象图形学报, 2015, 20(5): 687-699. |
Li Zhi-xin, Shi Zhi-ping, Zhang Can-long, et al. Hybrid generative/discriminative model for automatic image annotation[J]. Journal of Image and Graphics, 2015, 20(5): 687-699. | |
6 | Ding X, Li B, Xiong W, et al. Multi-Instance multi-label learning combining hierarchical context and its application to image annotation[J]. IEEE Transactions on Multimedia, 2016, 18(8): 1-12. |
7 | Zhou Z H, Zhang M L. Multi-label learning[M]∥ Sammut Claude, Webbv Geoffrey I. Encyclopedia of Machine Learning and Data Mining, Berlin: Springer, 2016:352-366. |
8 | Zhao M, Chow T W S, Zhang Z, et al. Automatic image annotation via compact graph based semi-supervised learning[J]. Knowledge-Based Systems, 2015, 76: 148-165. |
9 | 史彩娟, 阮秋琦. 基于增强稀疏性特征选择的网络图像标注[J]. 软件学报, 2015, 26(7): 1800-1811. |
Shi Cai-juan, Ruan Qiu-qi. Feature selection with enhanced sparsity for web image annotation[J]. Journal of Software, 2015, 26(7): 1800-1811. | |
10 | Wang H, Liu S, Chia L T. Does ontology help in image retrieval? a comparison between keyword, text ontology and multi-modality ontology approaches[C]∥ACM International Conference on Multimedia, Santa Barbara, USA, 2006: 109-112. |
11 | Srikanth M, Varner J, Bowden M, et al. Exploiting ontologies for automatic image annotation[C]∥Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, 2005: 552-558. |
12 | Smailis C V, Iakovidis D K. Ontology-based automatic image annotation exploiting generalized qualitative spatial semantics[C]∥The 7th Hellenic Conference on Artificial Intelligence, Lamia, Greece, 2012: 299-306. |
13 | Singh P, Goudar R H, Rathore R, et al. Domain ontology based efficient image retrieval[C]∥The 7th International Conference on Intelligent Systems and Control, Coimbatore, Tamilnadu, India, 2013: 445-452. |
14 | 王琦, 鲁东明. 基于构图分析的古代壁画相关度评价方法[J]. 浙江大学学报:工学版, 2012, 46(3): 21-30. |
Wang Qi, Lu Dong-Ming. Composition analysis-based relevance ranking for ancient mural[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(3): 21-30. | |
15 | Wei Z, Luo X, Zhou F. Ontology based automatic image annotation using multi-class SVM[C]∥The 7th International Conference on Image and Graphics, Qingdao, China, 2013: 434-438. |
16 | Ismat A R, Md Z U, Masaki A. Ontology based supervised learning for image annotation[J]. IEICE Technical Report Image Engineering[J]. 2014, 114: 41-46. |
17 | Ferdinand D, Paul M, Stéphanie F, et al. Developing a knowledge base to support the annotation of ultrasound images of ectopic pregnancy[J]. Journal of Biomedical Semantics, 2017, 8(1): 4-17. |
18 | Hyun-Deok No, Kwang-won Seo, Dong-Hyuk Im. Semantic image annotation and retrieval in mobile environments[J]. Journal of Korea Multimedia Society, 2016, 19(8): 1498-1504. |
19 | Vinyals O, Toshev A, Bengio S, et al. Show and tell: a neural image caption generator[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, United States, 2015: 3156-3164. |
20 | Xu K, Ba J L, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention [C]∥The 32nd International Conference on Machine Learning, Lile, France, 2015: 2048-2057. |
21 | 蒋树强, 闵巍庆, 王树徽. 面向智能交互的图像识别技术综述与展望[J]. 计算机研究与发展, 2016, 53(1): 113-122. |
Jiang Shu-qiang, Min Wei-qing, Wang Shu-hui. Survey and prospect of intelligent interaction-oriented image recognition techniques[J]. Journal of Computer Research and Development, 2016, 53(1): 113-122. | |
22 | Karpathy A, Li F F. Deep visual-semantic alignments for generating image descriptions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, United States, 2015: 3128-3137. |
23 | Fang H, Platt J C, Zitnick C L, et al. From captions to visual concepts and back[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, United States, 2015: 1473-1482. |
24 | Borisyuk F, Gordo A, Sivakumar V. Rosetta: large scale system for text detection and recognition in images[C]//The 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, United Kingdom, 2018: 71-79. |
25 | 王铁君, 王维兰. 基于多特征融合的唐卡图像法器识别方法[J]. 计算机工程, 2016, 42(3): 198-203, 207. |
Wang Tie-jun, Wang Wei-lan. Religious ritual implement recognition method in Thangka image based on multi-feature fusion[J]. Computer Engineering, 2016, 42(3): 198-203, 207. | |
26 | 吴禄慎,常参参,王晓辉,等. 基于局部调节卷积神经网络的图像识别方法[J]. 计算机工程, 2018, 44(12): 240-246. |
Wu Lu-shen,Chang Can-can,Wang Xiaohui,et al. Image recognition method based on local adjustment convolutional neural network[J]. Computer Engineering, 2018, 44(12): 240-246. | |
27 | 王铁君, 王维兰. 基于Jena的唐卡领域本体推理[J]. 吉林大学学报:工学版, 2016, 46(6): 2059-2066. |
Wang Tie-jun, Wang Wei-lan. Thangka domain ontology reasoning based on Jena[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6): 2059-2066. | |
28 | 王铁君, 王维兰. 唐卡领域本体研究与构建[J]. 吉林大学学报: 理学版, 2017, 55(2): 363-370. |
Wang Tie-jun, Wang Wei-lan. Research and construction of Thangka domain ontology[J]. Journal of Jilin University (Science Edition), 2017, 55(2): 363-370. |
[1] | 张笑东,夏筱筠,吕海峰,公绪超,廉梦佳. 大数据网络并行计算环境中生理数据流动态负载均衡[J]. 吉林大学学报(工学版), 2020, 50(1): 247-254. |
[2] | 王晓辉,吴禄慎,陈华伟. 基于法向量距离分类的散乱点云数据去噪[J]. 吉林大学学报(工学版), 2020, 50(1): 278-288. |
[3] | 邓钧忆,刘衍珩,冯时,赵荣村,王健. 基于GSPN的Ad⁃hoc网络性能和安全平衡[J]. 吉林大学学报(工学版), 2020, 50(1): 255-261. |
[4] | 李雄飞,王婧,张小利,范铁虎. 基于SVM和窗口梯度的多焦距图像融合方法[J]. 吉林大学学报(工学版), 2020, 50(1): 227-236. |
[5] | 王洪雁,邱贺磊,郑佳,裴炳南. 光照变化下基于低秩稀疏表示的视觉跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(1): 268-277. |
[6] | 车翔玖,刘华罗,邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038-2044. |
[7] | 周炳海,吴琼. 考虑工具和空间约束的机器人装配线平衡优化[J]. 吉林大学学报(工学版), 2019, 49(6): 2069-2075. |
[8] | 赵宏伟,王鹏,范丽丽,胡黄水,刘萍萍. 相似性保持实例检索方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2045-2050. |
[9] | 沈军,周晓,吉祖勤. 服务动态扩展网络及其结点系统模型的实现[J]. 吉林大学学报(工学版), 2019, 49(6): 2058-2068. |
[10] | 周柚,杨森,李大琳,吴春国,王岩,王康平. 基于现场可编程门电路的人脸检测识别加速平台[J]. 吉林大学学报(工学版), 2019, 49(6): 2051-2057. |
[11] | 李宾,周旭,梅芳,潘帅宁. 基于K-means和矩阵分解的位置推荐算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1653-1660. |
[12] | 李雄飞,宋璐,张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报(工学版), 2019, 49(4): 1307-1319. |
[13] | 刘元宁,刘帅,朱晓冬,霍光,丁通,张阔,姜雪,郭书君,张齐贤. 基于决策粒子群优化与稳定纹理的虹膜二次识别[J]. 吉林大学学报(工学版), 2019, 49(4): 1329-1338. |
[14] | 李宾,申国君,孙庚,郑婷婷. 改进的鸡群优化算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1339-1344. |
[15] | 孙延君,申铉京,陈海鹏,赵永哲. 基于局部平面线性点的翻拍图像鉴别算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1320-1328. |
|