吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 27-38.doi: 10.13229/j.cnki.jdxbgxb20200509

• 综述 • 上一篇    下一篇

基于深度学习的行人多目标跟踪方法

徐涛1,2(),马克1,2,刘才华1,2()   

  1. 1.中国民航大学 计算机科学与技术学院,天津 300300
    2.中国民航大学 中国民航信息技术科研基地,天津 300300
  • 收稿日期:2020-07-06 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 刘才华 E-mail:txu@cauc.edu.cn;chliu@cauc.edu.cn
  • 作者简介:徐涛(1962-),男,教授,博士.研究方向:智能信息处理,图像处理.E-mail:txu@cauc.edu.cn
  • 基金资助:
    天津市自然科学基金项目(18JCYBJC85100);中央高校基本科研业务基金项目(3122018C024);中国民航大学科研启动项目(2017QD16X)

Multi object pedestrian tracking based on deep learning

Tao XU1,2(),Ke MA1,2,Cai-hua LIU1,2()   

  1. 1.School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China
    2.Information Technology Research Base of Civil Aviation Administration of China,Civil Aviation University of China,Tianjin 300300,China
  • Received:2020-07-06 Online:2021-01-01 Published:2021-01-20
  • Contact: Cai-hua LIU E-mail:txu@cauc.edu.cn;chliu@cauc.edu.cn

摘要:

综合了近年来基于检测跟踪的主流行人多目标跟踪方法,介绍了基于检测的行人多目标跟踪方法概念,从目标检测、特征提取和数据关联与跟踪三个阶段对行人多目标跟踪方法进行了概述,比较并评价了这些方法在MOTChallenge系列数据集上的性能,阐述了多目标跟踪的未来研究方向。

关键词: 计算机视觉, 多目标跟踪, 目标检测, 特征提取, 数据关联

Abstract:

A survey of the mainstream multi object tracking methods based on tracking by detection in recent years is carried out. Then, the concept of detection based multi object tracking is introduced. The multi object tracking methods are summarized in object detection, feature extraction and data association & tracking. The performance of some multi object tracking(MOT) methods are compared and evaluated on the MOTChallenge series datasets. The future development direction of multi object tracking is discussed.

Key words: computer vision, multi object tracking, object detection, feature extraction, data association

中图分类号: 

  • TP391

图1

基于检测的跟踪基本框架图"

图2

Faster R-CNN网络结构"

图3

YOLO网络结构"

图4

Siamese网络结构"

图5

双线性LSTM网络结构"

表1

多目标跟踪评价指标"

度量名称期望分值简述
MOTA↑100%多目标跟踪准确度
MOTP↑100%多目标跟踪精度
MT↑100%最多跟踪的目标
ML↓0%最少丢失的目标
Frag↓0跟踪被打断的总次数
IDSW↓0身份切换的总次数
FP↓0错误正样本数量
FN↓0错误负样本数量
IDF1↑100%识别F值
Hz↑正无穷处理速度(以FPS为单位,但不包括检测器的处理速度)

表2

MOT系列数据集的视频序列及其主要属性"

数据集视频来源长度轨迹数量FPS相机状况视点密度天气
MOT2015TUD?Crossing2011325静止水平5.5多云
PETS2009?S2L2436427静止22.1多云
ETH?Crossing2192614移动4.9多云
ADL?Rundle?15003230移动水平18.6
KITTI?162091710静止水平8.1
MOT2016MOT16?014502330静止水平14.2多云
MOT16?03150014830静止69.7夜晚
MOT16?06119422114移动9.7
MOT16?129008630移动水平9.2室内
MOT2017MOT17?014502430静止水平14.3
MOT17?03150014830静止69.8夜晚
MOT17?06119422214移动水平9.9

表3

MOT15的多目标跟踪方法的通用指标评估结果"

方法MOTAMOTPFPFNIDSW
RNN_LSTM [44]19.071.011 57836 7061 490
MARLMOT[41]27.772.56 09221 976767
SiameseCNN[38]29.071.25 16037 798639
MHT_DAM[23]32.471.89 06432 060435
QuadMOT[3]33.873.47 89832 061703
STAM[2]34.370.55 15434 848348
RAN[4]35.170.96 77132 717381
AMIR[39]37.671.77 93329 3971026
AP_HWDPL[27]38.572.64 00533 203586
MPN[30]51.576.07 62021 780375

表4

MOT16的多目标跟踪方法的通用指标评估结果"

方法MOTAMOTPFPFNIDSW
DAN[18]40.874.415 14391 7921 051
MHT_bLSTM[5]42.175.911 63793 172753
QuadMOT[3]44.176.46 38894 775745
MHT_DAM[23]45.876.36 41291 758590
STAM[2]46.074.96 89591 117473
DMAN[35]46.173.87 90989 874532
AMIR[39]47.275.82 68192 856774
LMP[36]48.879.06 65486 245481
MPN[30]58.678.94 94970 252354
DeepSORT[24]61.479.112 85256 668781
NSH[17]63.978.59 82955 000913
POI[12]66.179.55 06155 914805
CTracker[28]67.678.48 93448 3051897
1 Fan L, Wang Z, Cail B, et al. A survey on multiple object tracking algorithm[C]∥IEEE International Conference on Information and Automation(ICIA), Ningbo, China, 2016: 1855-1862.
2 Chu Q, Ouyang W, Li H, et al. Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4836-4845.
3 Son J, Baek M, Cho M, et al. Multi-object tracking with quadruplet convolutional neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 5620-5629.
4 Fang K, Xiang Y, Li X, et al. Recurrent autoregressive networks for online multi-object tracking[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 2018: 466-475.
5 Kim C, Li F, Rehg J M. Multi-object tracking with neural gating using bilinear lstm[C]∥European Conference on Computer Vision(ECCV), Munich,Germany,2018: 208-224.
6 Xu Y, Zhou X, Chen S, et al. Deep learning for multiple object tracking: a survey[J]. IET Computer Vision, 2019, 13(4): 355-368.
7 Sun Z, Chen J, Liang C, et al. A survey of multiple pedestrian tracking based on tracking-by-detection framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020(99):1-10.
8 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
9 Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Amsterdam, Netherlands, 2016: 21-37.
10 Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA,2016: 779-788.
11 Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]∥IEEE International Conference on Image Processing (ICIP), Phoenix, USA,2016: 3464-3468.
12 Yu F, Li W, Li Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]∥ Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, 2016: 36-42.
13 Kieritz H, Hubner W, Arens M. Joint detection and online multi-object tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA,2018: 1540-1548.
14 Dawei Z, Hao F, Liang X, et al. Multi-object tracking with correlation filter for autonomous vehicle[J]. Sensors, 2018, 18(7): 2004-2011.
15 Redmon J, Farhadi A. YOLOv3:an incremental improvement[EB/OL]. [2018-04-08].
16 Jiang M, Hai T, Pan Z, et al. Multi-agent deep reinforcement learning for multi-object tracker[J]. IEEE Access, 2019, 7: 32400-32407.
17 He M, Luo H, Hui B, et al. Fast online multi-pedestrian tracking via integrating motion model and deep appearance model[J]. IEEE Access, 2019, 7: 89475-89486.
18 Zhou Q, Zhong B, Zhang Y, et al. Deep alignment network based multi-person tracking with occlusion and motion reasoning[J]. IEEE Transactions on Multimedia, 2018, 21(5): 1183-1194.
19 Ku J, Mozifian M, Lee J, et al. Joint 3d proposal generation and object detection from view aggregation[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 1-8.
20 Baser E, Balasubramanian V, Bhattacharyya P, et al. Fantrack: 3d multi-object tracking with feature association network[C]∥ IEEE Intelligent Vehicles Symposium(IV), Paris, France, 2019: 1426-1433.
21 Cao Z, Simon T, Wei S E, et al. Realtime multi-person 2d pose estimation using part affinity fields[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 1302-1310.
22 Ristani E, Tomasi C. Features for multi-target multi-camera tracking and re-identification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA,2018: 6036-6046.
23 Kim C, Li F, Ciptadi A, et al. Multiple hypothesis tracking revisited[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4696-4704.
24 Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]∥IEEE International Conference on Image Processing(ICIP), Beijing, 2017: 3645-3649.
25 Mahmoudi N, Ahadi S M, Rahmati M. Multi-target tracking using CNN-based features: CNNMTT[J]. Multimedia Tools and Applications, 2019, 78(6): 7077-7096.
26 Sheng H, Zhang Y, Chen J, et al. Heterogeneous association graph fusion for target association in multiple object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(11): 3269-3280.
27 Chen L, Ai H, Shang C, et al. Online multi-object tracking with convolutional neural networks[C]∥IEEE International Conference on Image Processing(ICIP), Beijing, 2017: 645-649.
28 Peng J, Wang C. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[EB/OL]. [2020-10-13].
29 He Z, Li J, Liu D, et al. Tracking by animation: unsupervised learning of multi-object attentive trackers[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA,2019: 1318-1327.
30 Brasó G, Leal-Taixé L. Learning a neural solver for multiple object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6247-6257.
31 Porzi L, Hofinger M, Ruiz I, et al. Learning multi-object tracking and segmentation from automatic annotations[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6846-6855.
32 Kim M, Alletto S. Similarity mapping with enhanced siamese network for multi-object tracking[EB/OL]. [2020-10-13].
33 Lee S, Kim E. Multiple object tracking via feature pyramid Siamese networks[J]. IEEE Access, 2018, 7: 8181-8194.
34 Leal-Taixé L, Canton-Ferrer C, Schindler K. Learning by tracking: siamese CNN for robust target association[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA,2016: 418-425.
35 Zhu J, Yang H, Liu N, et al. Online multi-object tracking with dual matching attention networks[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Munich,Germany, 2018: 366-382.
36 Tang S, Andriluka M, Andres B, et al. Multiple people tracking by lifted multicut and person re-identification[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 3539-3548.
37 Yin J, Wang W, Meng Q, et al. A unified object motion and affinity model for online multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6768-6777.
38 Lu Y, Lu C, Tang C K. Online video object detection using association LSTM[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2344-2352.
39 Sadeghian A, Alahi A, Savarese S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 300-311.
40 Chen L, Peng X, Ren M. Recurrent metric networks and batch multiple hypothesis for multi-object tracking[J]. IEEE Access, 2019, 7: 3093-3105.
41 Rosello P, Kochenderfer M J. Multi-agent reinforcement learning for multi-object tracking[C]∥Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 2018: 1397-1404.
42 Munkres J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32-38.
43 Xu Y, Osep A, Ban Y, et al. How to train your deep multi-object tracker[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 6787-6796.
44 Milan A, Rezatofighi S H, Dick A, et al. Online multi-target tracking using recurrent neural networks[C]∥ Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA,2017:4225-4232.
45 Yoon K, Kim D Y, Yoon Y C, et al. Data association for multi-object tracking via deep neural networks[J]. Sensors, 2019, 19(3): 559-574.
46 Chu P, Fan H, Tan C C, et al. Online multi-object tracking with instance-aware tracker and dynamic model refreshment[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, USA, 2019: 161-170.
47 Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics, 2005, 52(1): 7-21.
48 Wu B, Nevatia R. Tracking of multiple, partially occluded humans based on static body part detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'06), New York, USA,2006: 951-958.
49 Keni B, Rainer S. Evaluating multiple object tracking performance: The CLEAR MOT Metrics[J]. Eurasip Journal on Image & Video Processing, 2008 (1): 246309.
50 Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 17-35.
51 Leal-Taixé L, Milan A, Reid I, et al. Motchallenge 2015: Towards a benchmark for multi-target tracking[EB/OL]. [2015-04-08].
52 Leal-Taixé L, Milan A, Reid I, et al. MOT16: A benchmark for multi-object tracking[EB/OL]. [2016-05-03].
53 Felzenszwalb P F, Girshick R B, Mcallester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Software Engineering, 2010, 32(9): 1627-1645.
54 Yang F, Choi W, Lin Y. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas,USA, 2016:2129-2137.
55 Dendorfer P, Rezatofighi H, Milan A, et al. CVPR19 tracking and detection challenge: how crowded can it get?[EB/OL]. [2019-06-10].
56 Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,2012: 3354-3361.
57 Ferryman J, Shahrokni A. Pets2009: dataset and challenge[C]∥Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Snowbird, USA,2009: 1-6.
58 Andriluka M, Roth S, Schiele B. Monocular 3d pose estimation and tracking by detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA,2010: 623-630.
59 Wen L, Du D, Cai Z, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
60 Leal-Taixé L, Milan A. Tracking the trackers: an analysis of the state of the art in multiple object tracking[EB/OL]. [2020-10-13].
61 Yoon K, Song Y, Jeon M. Multiple hypothesis tracking algorithm for multi-target multi-camera tracking with disjoint views[J]. IET Image Processing, 2018, 12(7): 1175-1184.
62 Liang Y, Zhou Y. Multi-camera tracking exploiting person re-id technique[C]∥The 24th International Conference on Neural Information Processing, Guangzhou, China, 2017: 397-404.
63 Yoo H, Kim K, Byeon M, et al. Online scheme for multiple camera multiple target tracking based on multiple hypothesis tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 27(3): 454-469.
64 Tang Z, Naphade M, Liu M Y, et al. Cityflow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8797-8806.
65 Imani Y, Teyfouri N, Ahmadzadeh M R, et al. A new method for multiple sperm cells tracking[J]. Journal of Medical Signals & Sensors, 2014, 4(1): 35-42.
66 Meirovitch Y, Mi L, Saribekyan H, et al. Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8425-8435.
67 Mittek M, Psota E T, Pérez L C, et al. Health monitoring of group-housed pigs using depth-enabled multi-object tracking[C]∥Proceedings of International Conference on Pattern Recognition (ICPR), Cancun, Mexico,2016: 9-12.
[1] 车翔玖,刘华罗,邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038-2044.
[2] 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667.
[3] 赵宏伟,李明昭,刘静,胡黄水,王丹,臧雪柏. 基于自然性和视觉特征通道的场景分类[J]. 吉林大学学报(工学版), 2019, 49(5): 1668-1675.
[4] 王鹏宇,赵世杰,马天飞,熊晓勇,程馨. 基于联合概率数据关联的车用多传感器目标跟踪融合算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1420-1427.
[5] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[6] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[7] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[8] 杨超宇, 李策, 梁胤程, 杨峰. 基于改进粒子滤波的煤矿视频监控模糊目标检测[J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
[9] 董强, 刘晶红, 周前飞. 用于遥感图像拼接的改进SURF算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[10] 许岩岩, 陈辉, 刘家驹, 袁金钊. CELL处理器并行实现立体匹配算法[J]. 吉林大学学报(工学版), 2017, 47(3): 952-958.
[11] 姜宏, 李垠, 吕巍. 基于线性收缩的大阵列MIMO雷达目标盲检测[J]. 吉林大学学报(工学版), 2017, 47(3): 973-980.
[12] 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[13] 孙挺, 齐迎春, 耿国华. 基于帧间差分和背景差分的运动目标检测算法[J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329.
[14] 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[15] 刘红,孙爽滋,王庆元,李延忠. 基于PSO的模拟电路故障信息特征提取[J]. 吉林大学学报(工学版), 2015, 45(2): 675-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!