吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 2761-2772.doi: 10.13229/j.cnki.jdxbgxb.20211350

• 车辆工程·机械工程 • 上一篇    下一篇

数控滚齿机工作台热-力变形分析及预测建模

王四宝1,2(),郭忠政1,2,马驰1,2,王时龙1,2   

  1. 1.重庆大学 机械与运载工程学院 重庆 400044
    2.重庆大学 机械传动国家重点实验室 重庆 400044
  • 收稿日期:2021-12-07 出版日期:2023-10-01 发布日期:2023-12-13
  • 作者简介:王四宝(1986-),男,研究员,博士.研究方向:智能制造,多轴切削路径优化,切削颤振,表面质量预测.E-mail:wangsibaocqu@cqu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFB1703701);国家自然科学基金重点项目(51635003);重庆市留学人员回国创业创新支持计划项目(cx2021035);重庆市科委自然科学基金项目(cstc2019jcyj-msxm0058);重庆市自然科学基金创新群体科学基金项目(cstc2019jcyj-cxttX0003)

Thermal-force deformation analysis and prediction modeling of CNC gear hobbing machine workbench

Si-bao WANG1,2(),Zhong-zheng GUO1,2,Chi MA1,2,Shi-long WANG1,2   

  1. 1.College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China
    2.State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044,China
  • Received:2021-12-07 Online:2023-10-01 Published:2023-12-13

摘要:

为了减小滚齿机工作台变形对加工精度的影响,对工作台热、力变形进行了研究,提出一种基于子种群自适应思维进化算法优化反向传播(SAMEA-BP)神经网络的滚齿机工作台热-力变形预测方法。通过SAMEA对BP神经网络的初始值、权重和阈值等参量进行调整,有效提升了基于神经网络的热-力变形预测准确度。结合K均值聚类策略和灰色关联分析(GRA)对影响热误差的温度测点进行耦合性和关联度分析,将热误差输入变量从8个测点减少到3个;针对滚齿加工中切削力导致的工作台变形,利用机床主轴电流表征切削力,并作为预测模型的输入变量。试验结果表明:本文模型平均预测精度为95.1%,与其他模型进行的对比分析验证了本文SAMEA-BP模型的有效性和泛化性。

关键词: 热致误差, 力致误差, SAMEA?BP神经网络, 均值聚类算法, 灰色关联分析

Abstract:

In order to reduce the influence of hobbing workbench deformation on machining accuracy, the thermal and mechanical deformation of the workbench were studied.A Subpopulation Adaptive Mind Evolution Algorithm-Back Propagation Neural Network was proposed for thermal-mechanical deformation prediction of hobbing workbench. The initial value, weight and threshold of BP Neural Network were adjusted by SAMEA, which effectively improved the prediction accuracy. Combining K-means clustering and grey correlation analysis (GRA), the thermal error input variables were reduced from eight to three. Aiming at the table deformation caused by cutting force in gear hobbing, the cutting force was represented by the current of machine tool spindle and used as the input variable of the prediction model. Experimental results show that the average prediction accuracy of the proposed SAMEA-BP model is 95.1%, and comparison with other models verifies the validity and generalization of the model.

Key words: thermal error, force error, SAMEA-BP neural network, mean clustering algorithm, grey relation analysis

中图分类号: 

  • TH161

图1

滚齿机结构简图"

图2

床身热变形"

图3

滚齿机空间坐标系"

图4

滚齿加工切屑形成过程"

图5

思维进化算法系统框架图"

图6

SAMEA-BP流程图"

图7

BP神经网络结构"

表1

思维进化算法参数表"

参数取值参数取值
种群大小40子群体数6
优胜子种群数6迭代次数70
临时子种群数6

表2

滚刀与齿轮工件的几何参数"

滚刀参数数值齿轮参数数值
头数2法向模数/mm5.08
旋向左旋法向压力角/(°)20
外径/mm110齿数34
螺旋角5°34′30″齿顶圆直径/mm192
容屑槽数10螺旋角/(°)13
容屑槽类型直槽齿宽/mm30

表3

温度、位移传感器安装位置"

传感器安装/检测位置传感器安装/检测位置
T1小立柱外侧T6刀架侧面
T2Z轴拖板丝杠套T7床身上表面
T3Z轴拖板上部T8环境温度
T4立柱Z轴静压导轨S1工作台X方向
T5电主轴轴承侧面S2工作台Y方向

图8

温度、位移采集模块实物图"

图9

电流采集模块实物图"

表4

加工参数"

t/minn/(r·min-1f/(mm·min-1ap/mm
0~40120126
40~80160147
80~120200168

图10

主轴三相电流变化"

图11

Irms变化"

图12

机床温度变化"

图13

工作台位移"

表5

温度变量与热误差的K均值聚类-灰色关联度"

分组序号K均值聚类分组结果灰色关联度大小
1T1T2T30.7210.9390.735
2T4T70.6880.693
3T5T6T80.7050.6940.687

图14

X方向的预测和测量值"

图15

X方向预测残差"

图16

Y方向的预测和测量值"

图17

Y方向预测残差"

表6

各模型的RMSE值"

方向SAMEA-BPMEA-BPPSO-BPGA-BPSAMEA-BP2
X0.37540.50430.72480.92020.5254
Y0.33910.48540.78460.82150.3545

表7

各模型的性能比较"

算 法方 向迭代次数收敛时间/sR2下降梯度
SAMEA-BPX22<0.0010.98460.405
Y27<0.0010.97030.394
MEA-BPX33<0.0010.96340.252
Y27<0.0010.96370.314
PSO-BPX57<0.010.96170.216
Y46<0.010.95640.227
GA-BPX62<0.010.94480.124
Y48<0.010.94950.095
SAMEA-BP2X35<0.0010.98540.301
Y25<0.0010.97190.267

图18

X方向泛化性能比较"

图19

泛化性能比较"

1 李国龙, 陶小会, 徐凯, 等. 数控机床转台位置相关几何误差的快速测量与辨识[J]. 吉林大学学报: 工学版, 2021, 51(2): 458-467.
Li Guo-long, Tao Xiao-hui, Xu Kai,et al. Rapid measurement and identification of position dependent geometric errors of CNC machine tool turntable[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 458-467.
2 李彬, 张云, 王立平, 等. 基于遗传算法优化小波神经网络数控机床热误差建模[J]. 机械工程学报, 2019, 55(21): 215-220.
Li Bin, Zhang Yun, Wang Li-ping,et al. Modeling for CNC machine tool thermal error based on genetic algorithm optimization wavelet neural networks[J]. Journal of Mechanical Engineering, 2019, 55(21): 215-220.
3 郭世杰, 张学炜, 张楠, 等. 机床主轴热关键点选择与典型转速热误差预测[J]. 吉林大学学报: 工学版, 2021, 51(1): 1-10.
Guo Shi-jie, Zhang Xue-wei, Zhang Nan, et al. Thermal key point select and error prediction under typical speed of machine tool spindle[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-10.
4 Liang Y, Su H, Lu L, et al. Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(1-4): 635-645.
5 Grama S N, Mathur A, Aralaguppi R, et al. Optimization of high speed machine tool spindle to minimize thermal distortion[J]. Procedia CIRP, 2017, 58:457-462.
6 谢杰, 黄筱调, 方成刚, 等. 磨齿机电主轴热特性及热误差建模[J]. 浙江大学学报: 工学版, 2018, 52(2): 247-254.
Xie Jie, Huang Xiao-diao, Fang Cheng-gang, et al. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(2): 247-254.
7 Liu Y, Wang X F, Zhu X G, et al. Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network[J]. Journal of Mechanical Science and Technology, 2021, 35(1): 281-292.
8 Miao E-M, Gong Y-Y, Niu P-C, et al. Robustness of thermal error compensation modeling models of CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2593-2603.
9 Lei M, Jiang G, Yang J, et al. Thermal error modeling with dirty and small training sample for the motorized spindle of a precision boring machine[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1-4): 571-586.
10 Xiang S, Yang J. Error map construction and compensation of a NC lathe under thermal and load effects[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 645-655.
11 Tang Xian-kang, Zhao Jun, Zhang Zi-jian. Model of cutting forces prediction for gear milling considering the three-dimensional undeformed chip thickness, penetration curve and working angles[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(5/6): 1659-1671.
12 Umasai K, Venkata M, Pbgsn M. Mechanistic models for prediction of cutting forces and power consumption considering chip geometry[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2020, 235(2): 479-488.
13 陈永鹏. 高速干切滚齿多刃断续切削空间成形模型及其基础应用研究[D]. 重庆: 重庆大学机械与运载学院, 2015.
Chen Yong-peng. Spatial forming model of high-sppeed dry hobbong by interrupted cutting with multiple-cutting-edge and its application[D]. Chongqing: College of Mechanical and Vehicle Engineering, Chongqing University, 2015.
14 Sabkhi N, Pelaingre C, Barlier C, et al. Characterization of the cutting forces generated during the gear hobbing process: spur gear[J]. Procedia CIRP, 2015, 31: 411-416.
15 Jomaa W, Songmene V, Bocher P. Predictive analytical modeling of cutting forces generated by high-speed machining of ductile and hard metals[J]. Machining Science and Technology, 2017, 21(3): 335-361.
16 黄颖旭, 李波, 田锡天. 基于主轴电流的铣削力间接监测方法[J]. 计算机集成制造系统, 2022, 28(1): 93-101.
Huang Ying-xu, Li Bo, Tian Xi-tian. Indirect monitoring method of milling force based on spindle current[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 93-101.
17 Mostaghimi H, Park C I, Kang G, et al. Reconstruction of cutting forces through fusion of accelerometer and spindle current signals[J]. Journal of Manufacturing Processes, 2021, 68: 990-1003.
18 Panagiotis S, Harry B, Thanassis S, et al. A method for cutting force estimation through joint current signals in robotic machining[J]. Procedia Manufacturing, 2021, 55: 124-131.
19 Yamada Y, Kakinuma Y. Mode decoupled cutting force monitoring by applying multi encoder based disturbance observer[J]. Procedia CIRP, 2016, 57:643-648.
20 王国权. 数控滚齿机动态误差补偿技术研究[D]. 合肥:合肥工业大学机械工程学院, 2015.
Wang Guo-quan.The Dynamic Error Compensating Technology Research of CNC Gear Hobbing Machine[D]. Hefei: College of Mechanical Engineering,Hefei University of Technology, 2015.
21 李根, 李文辉. 基于思维进化算法的人脸特征点跟踪[J]. 吉林大学学报:工学版, 2015, 45(2): 606-612.
Li Gen, Li Wen-hui. Facial feature tracking on mind evolutionary algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(2): 606-612.
[1] 杨海吉,何佳龙,李国发,王立鼎,王思远. 改进失效模式和影响分析方法在加工中心主轴系统风险分析中的应用[J]. 吉林大学学报(工学版), 2022, 52(2): 345-352.
[2] 许博,李传习. 基于灰色理论的大跨度钢管混凝土拱桥承载能力检测方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2360-2366.
[3] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] 刘仁云,于繁华,刘军. 基于小波神经网络的简支梁桥损伤识别[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 413-0416.
[5] 陶敏,李建桥,杨印生,李洪伟,潘燕. 金属基仿生减阻材料元素与性能量化分析[J]. 吉林大学学报(工学版), 2006, 36(03): 367-0370.
[6] 于繁华,赵宏伟,臧雪柏,刘仁云,王立江. 基于小波神经网络的变参数振动钻削仿真[J]. 吉林大学学报(工学版), 2005, 35(03): 297-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!