吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 468-479.doi: 10.13229/j.cnki.jdxbgxb20211071

• 交通运输工程·土木工程 • 上一篇    下一篇

考虑时变交通拥堵的纯电动物流车路径规划模型

孙宝凤(),姚天姿,陈雨琦   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2021-10-22 出版日期:2023-02-01 发布日期:2023-02-28
  • 作者简介:孙宝凤(1970-),女,教授,博士生导师.研究方向:智能物流系统规划与运筹优化.E-mail:sunbf@jlu.edu.cn
  • 基金资助:
    吉林省自然科学基金项目(20210101055JC)

Electric delivery vehicle routing problem optimization model with time⁃varying traffic congestion

Bao-feng SUN(),Tian-zi YAO,Yu-qi CHEN   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2021-10-22 Online:2023-02-01 Published:2023-02-28

摘要:

为通过合理规划车队出行方案,最大限度减少在交通拥堵时段车辆的能源消耗,同时缓解配送人员的电动车辆里程焦虑,本文研究了考虑时变交通拥堵的纯电动物流车路径规划问题。首先立足于EVRP扩展模型构建,建立了一个新的混合整数规划模型(TD-EVRP),尤其界定和表征了时变交通拥堵状态,并量化了电动物流车能源消耗,重新完善了客户时间窗、车辆载重以及车辆充电需求等约束条件。其次,引入了交通拥堵规避策略,允许车辆在交通高峰期在客户点停车充电,主动规避交通拥堵带来的不必要能源消耗。最后,使用改进的蚁群算法获得最优解,给出了交通拥堵规避策略下总能源消耗最小化的配送方案。有无对比分析表明,小规模实例下,带规避策略的TD-EVRP模型比无规避策略时能够显著减少能源消耗14.91%。

关键词: 运输规划, 时变交通拥堵, 路径规划问题, 纯电动物流车, 能源消耗, 交通拥堵规避策略

Abstract:

In order to plan a reasonable scheme for the fleet travel and minimize the energy consumption of electric vehicles during traffic congestion periods, while relieving the mileage anxiety of delivery personnel, The pure electric delivery vehicle routing problem considering time-varying traffic congestion was studied. Firstly, a novel mixed integer programming model(TD-EVRP) is established to step for its extended model of EVRP, which especially characterizes the time-varying traffic congestion state and measures the energy consumption of electric delivery vehicles. This model also refines its constraints including customer time window, vehicle load, and vehicle charging requirements. Secondly, a traffic congestion avoidance strategy is introduced into the model, which allows vehicles to park and charge at customer points during peak traffic periods in order to actively avoid unnecessary energy consumption caused by traffic congestion. Finally, the improved ant colony algorithm is designed to acquire the optimal solution. The comparison analysis shows that the TD-EVRP model with avoidance strategy constructed than without scenario can significantly reduce the energy consumption by 14.91% in small-scale case.

Key words: transportation planning, time-varying traffic congestion, vehicle routing problem, electric delivery vehicles, energy consumption, traffic avoidance strategy

中图分类号: 

  • N945.15

图1

交通拥堵时间段示意图"

图2

考虑交通拥堵规避策略的配送网络图"

表1

电动物流车相关参数"

参数含义赋值参数含义赋值
m汽车整备质量2800 kgBmax车辆电池最大电量80 kW·h
Qmax车辆最大载重量1550 kgBmin车辆最低安全电量20 kW·h
g重力加速度9.81 m/s2r充电速率65 kW
f滚动阻力系数0.015η综合能量转换效率0.9
ρa空气密度1.20 kg/m3Cd空气阻力系数0.7
A车辆迎风面积4.912 m2Paux辅助设备消耗功率1.2 kW

表2

配送中心及客户点信息表"

客户点X坐标Y坐标需求量/kg时间窗卸货时间/min
0116.3294339.814713-6:00-15:00-
1116.35490139.8963371596:00-14:0010
2116.4023339.9644331406:00-14:0010
3116.31352239.8838731426:00-14:0010
4116.29820939.8426421466:00-14:0010
5116.36496439.8458561426:00-14:0010
6116.40766439.8713741536:00-14:0010
7116.48458239.8216481516:00-14:0010
8116.43822339.8603281666:00-14:0010
9116.37913539.9395511476:00-14:0010
10116.41631239.9191431406:00-14:0010
11116.45152439.8044981586:00-14:0010
12116.47274139.9101381516:00-14:0010
13116.27567839.8697141666:00-14:0010
14116.21751939.8999051706:00-14:0010
15116.49621139.9538881616:00-14:0010
16116.28486540.0078831536:00-14:0010
17116.47117539.8707651726:00-14:0010
18116.42312239.8902871786:00-14:0010
19116.26947839.8935951486:00-14:0010
20116.31669139.9213971636:00-14:0010
21116.3078739.9654471706:00-14:0010
22116.29462239.9166831616:00-14:0010
23116.23476139.9512581516:00-14:0010
24116.27719939.9320081406:00-14:0010
25116.33560139.9678811436:00-14:0010

表3

交通拥堵规避策略下总能源消耗最小化配送方案"

车辆编号

行驶路径顺序route

n*为安全充电点)

拥堵规避等待时间

twi/min

总能源消耗

B/(kW·h)

总配送时间

T/min

合计202197.8111463.982
1

0—2—3*—4—5—7—

—11—6—10—9—0

73

(8:07~9:20)

65.343491.996
2

0—8—1—15*—20—

—22—13—12—18—0

54

(8:36~9:30)

66.866475.561
3

0—17—16*—14—19—

—21—23—24—25—0

75

(8:25~9:40)

65.602496.425

表4

无规避策略的总能源消耗最小化配送方案"

车辆编号

行驶路径顺序route

n* 为安全充电点)

安全电量充电时间

tci/min

总能源消耗

B/(kW·h)

总配送时间

T/min

合计146232.4771469.924
1

0—2—3—4—5—1—

—8—9*—11—7—0

52

(11:45~12:37)

83.706518.218
2

0—17—6—10—12—

—18—21—19—20*—0

50

(11:38~12:28)

64.068426.896
3

0—13—22—23—24-

—15—14*—16—25—0

44

(11:49~12:33)

84.703524.810

表5

不同策略下路径配送方案运行结果"

运行

次数

交通拥堵规避策略无-交通拥堵规避策略
总能源消耗B/(kW·h)总配送时间T/min总能源消耗B/(kW·h)总配送时间T/min
平均值202.0281512.778237.4391485.029
1201.9481483.599232.7391453.933
2205.3051531.255240.0531511.916
3204.9571556.283239.8221495.983
4197.8111463.982239.1301486.531
5198.0011488.151238.9361473.681
6201.3311503.640237.4781494.426
7209.8781578.205239.1051509.826
8198.3891496.955236.2311470.201
9203.8011527.617232.4771469.924
10198.8591498.096238.4211483.871

表6

不同优化目标下路径配送方案运行结果"

运行

次数

总能源消耗最小化路径最短
*总能源消耗B/(kW·h)总行驶距离D/km总能源消耗B/(kW·h)*总行驶距离D/km
平均值202.028552.335220.665525.349
1201.948533.560217.631523.270
2205.305550.470219.334528.860
3204.957555.280219.627526.670
4197.811543.590222.478530.740
5198.001543.780217.455519.390
6201.331531.390218.581522.760
7209.878583.360220.281524.140
8198.389559.150225.395530.120
9203.801563.140216.811520.980
10198.859559.630229.055526.560
1 国务院办公厅. 新能源汽车产业发展规划(2021—2035年)[EB/OL][2020-10-20]. .
2 Desau; niers G, Errico F, Imich S, et al. Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows[J]. Operations Research: The Journal of the Operations Research Society of America, 2016, 64(6): 1388-1405.
3 Schneider M, Stenger A, Goeke D. The electric vehicle routing problem with time windows and recharging stations [J]. Transportation Science, 2014, 48(4): 500-520.
4 张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报: 自然科学版, 2016, 56(2): 130-136.
Zhang Shu-wei, Luo Yu-gong, Li Ke-qiang. Multi-Objective Trip Planning of Pure Electric Vehicles in Dynamic Traffic Environments[J]. Journal of Tsinghua University: Science and Technology, 2016, 56(2): 130-136.
5 Qin H, Su X, Ren T, et al. A review on the electric vehicle routing problems: variants and algorithms[J]. Front Eng Manag, 2021, 8(3): 370-389.
6 Pelletier S, Jabali O, Laporte G. 50th anniversary invited article—goods distribution with electric vehicles: review and research perspectives[J]. Transportation Science, 2016, 50(1): 3-22.
7 Basso R, Kulcsárb B, Egardtb B, et al. Energy consumption estimation integrated into the electric vehicle routing problem[J]. Transportation Research Part D, 2019, 69: 141-167.
8 Lu J, Chen Y, Hao J K, et al. The time-dependent electric vehicle routing problem: model and solution[J].Expert Systems with Applications, 2020, 161: 113593.
9 Florio A M, Absi N, Feillet D. Routing Electric Vehicles on Congested Street Networks[J]. Transportation Science, 2020, 55(1): 238-256.
10 Jafari E, Boyles S D. Multicriteria stochastic shortest path problem for electric vehicles[J].Networks and Spatial Economics, 2017, 17(3): 1043-1070.
11 柳开济. 纯电动物流配送车运营调度模型设计与实现[D]. 成都: 电子科技大学航空航天学院, 2016.
Liu Kai-ji. Design and implementation of operation dcheduling model for pure rlectric logistics delivery vehicle[D]. Chengdu: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, 2016.
12 Kok A L, Hans E W, Schutten J. Vehicle routing under time-dependent travel times: The impact of congestion avoidance[J]. Computers & Operations Research, 2012, 39(5): 910-918.
13 Xiao Y Y, Konak A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion[J] Transportation Research Part E: Logistics and Transportation Review, 2016, 88(C): 146-166.
14 刘长石, 申立智, 盛虎宜,等. 考虑交通拥堵规避的低碳时变车辆路径问题研究[J]. 控制与决策, 2020, 35(10): 2486-1496.
Liu Chang-shi, Shen Li-zhi, Sheng Hu-yi, et al. Research on low-carbon time-varying vehicle path problem considering traffic congestion avoidance[J]. Control and Decision, 2020, 35(10): 2486-1496.
15 葛显龙, 冉小芬. 考虑时变交通拥堵的污染路径优化研究[J]. 工业工程与管理, 2020, 25(3): 75-85, 93.
Ge Xian-long, Ran Xiao-fen. Research on Pollution Path Optimization Considering Time-Varying Traffic Congestion[J]. Industrial Engineering and Management, 2020, 25(3): 75-85, 93.
16 Asamer J, Graser A, Heilmann B, et al. Sensitivity analysis for energy demand estimation of electric vehicles[J]. Transportation Research Part D, 2016, 46: 182-199.
17 Demir E, Bektaş T, Laporte G. A review of recent research on green road freight transportation [J]. European Journal of Operational Research, 2014, 237(3): 775-793.
18 Goeke D, Schneider M. Routing a mixed fleet of electric and conventional vehicles [J]. European Journal of Operational Research, 2015, 245(1): 81-99.
19 Li Y B, Soleimani H, Zohal M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives[J]. Journal of Cleaner Production, 2019, 227: 1161-1172.
20 Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4): 455-472.
21 Zhang S, Gajpal Y, Appadoo S S, et al. Electric vehicle routing problem with recharging stations for minimizing energy consumption[J]. International Journal of Production Economics, 2018, 203: 404-413.
22 陈宝文. 蚁群优化算法在车辆路径问题中的应用研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2009.
Chen Bao-wen. Application of ant colony optimization in vehicle routing problems[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2009.
23 宋稚雅. 基于纯电动物流车的城市配送车辆路径问题研究[D]. 北京: 北京交通大学经济与管理学院, 2019.
Song Zhi-ya. Study on urban distribution vehicle routing problem based on pure electric logistics vehicle[D]. Beijing: School of Economics and Management, Beijing Jiaotong University, 2019.
[1] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
[2] 闫云娟,查伟雄,石俊刚,李剑. 具有随机充电需求的混合动态网络平衡模型[J]. 吉林大学学报(工学版), 2022, 52(1): 136-143.
[3] 李浩,陈浩. 考虑充电排队时间的电动汽车混合交通路网均衡[J]. 吉林大学学报(工学版), 2021, 51(5): 1684-1691.
[4] 户佐安,夏一鸣,蔡佳,薛锋. 延误条件下综合多种策略的城轨列车运行调整优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1664-1672.
[5] 周炳海,何朝旭. 基于静态半成套策略的多目标准时化物料配送调度[J]. 吉林大学学报(工学版), 2021, 51(3): 910-916.
[6] 朱才华,孙晓黎,李岩. 站点分类下的城市公共自行车交通需求预测[J]. 吉林大学学报(工学版), 2021, 51(2): 531-540.
[7] 罗清玉,田万利,贾洪飞. 考虑通勤需求的电动汽车充电站选址与定容模型[J]. 吉林大学学报(工学版), 2019, 49(5): 1471-1477.
[8] 曹骞, 李君, 刘宇, 曲大为. 基于马尔科夫链的长春市乘用车行驶工况构建[J]. 吉林大学学报(工学版), 2018, 48(5): 1366-1373.
[9] 孙宝凤, 高坤, 申琇秀, 梁婷. 基于能力平衡和变覆盖半径的加油站网络扩充选址模型[J]. 吉林大学学报(工学版), 2018, 48(3): 704-711.
[10] 徐亮,程国柱. 基于车速离散度和经济车速的高速公路最低车速限制[J]. 吉林大学学报(工学版), 2010, 40(03): 661-0665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .