吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 457-467.doi: 10.13229/j.cnki.jdxbgxb20210614

• 交通运输工程·土木工程 • 上一篇    下一篇

基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析

潘恒彦1(),张文会2,梁婷婷3,彭志鹏1,高维4,王永岗1()   

  1. 1.长安大学 运输工程学院,西安 710064
    2.东北林业大学 交通学院,哈尔滨 150040
    3.西安交通工程学院 土木工程学院,西安 710399
    4.哈尔滨工业大学 交通科学与工程学院,哈尔滨 150090
  • 收稿日期:2021-12-01 出版日期:2023-02-01 发布日期:2023-02-28
  • 通讯作者: 王永岗 E-mail:HyPan7@chd.edu.cn;wangyg@chd.edu.cn
  • 作者简介:潘恒彦(1994-), 男, 博士研究生. 研究方向: 交通安全,交通规划. E-mail: HyPan7@chd.edu.cn
  • 基金资助:
    国家社会科学基金项目(19BGL239)

Inducement analysis of taxi drivers' traffic accidents based on MIMIC and machine learning

Heng-yan PAN1(),Wen-hui ZHANG2,Ting-ting LIANG3,Zhi-peng PENG1,Wei GAO4,Yong-gang WANG1()   

  1. 1.College of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
    3.School of Civil Engineering,Xi'an Traffic Engineering Institute,Xi'an 710399,China
    4.School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150090,China
  • Received:2021-12-01 Online:2023-02-01 Published:2023-02-28
  • Contact: Yong-gang WANG E-mail:HyPan7@chd.edu.cn;wangyg@chd.edu.cn

摘要:

通过调查问卷收集2391名出租车驾驶员个体属性、身体疲劳感知、工作压力、风险驾驶行为和交通事故经历的相关信息。运用多指标多原因(MIMIC)模型进行路径分析,探究身体疲劳感知、风险驾驶行为对交通事故的诱发效应,验证性别、年龄、工作压力的原因变量对身体疲劳感知、分心驾驶行为的影响作用。选取逻辑回归、朴素贝叶斯、支持向量机、随机森林4种机器学习算法对出租车事故进行预测。结果表明:身体疲劳感知、过失性驾驶行为、激进性驾驶行为与分心驾驶行为的提高能够导致事故率的提高,性别、年龄、工作压力会对身体疲劳感知与分心驾驶行为的频次产生影响。基于机器学习的事故预测模型效果极佳,其中随机森林的预测效果最好,使用单一特征变量“风险驾驶行为”、“分心驾驶行为”、“身体疲劳感知”的预测精度尚可接受。当引入“工作压力”、“年龄”、“性别”的个人属性指标时,预测精度进一步提高。

关键词: 交通运输安全工程, 出租车驾驶员, 道路交通事故, MIMIC模型, 路径分析, 中介效应, 机器学习

Abstract:

Through the questionnaire, 2391 taxi drivers' personal attributes, physical fatigue perception, work load, risk driving behaviors and road traffic accident experience were collected. Multiple indicators and multiple causes(MIMIC) model is used to explore the induced effects of physical fatigue perception, risky driving behavior on traffic accidents, and to verify the effects of causal variable for gender, age and work pressure on physical fatigue perception and distracted driving behavior. Four machine learning algorithms, including logistic regression, naive Bayes, support vector machine and random forest, are selected to predict the taxi accident. The results show that: the increase of physical fatigue perception, errors driving behavior, radical driving behavior and distracted driving behavior can lead to the growth of accident rate, and gender, age and work load can affect the physical fatigue perception and frequency of distracted driving behavior. The accident prediction model based on machine learning is very effective, and the prediction effect of random forest is the highest, and the prediction accuracy of single characteristic variables 'risky driving behavior', 'distracted driving behavior' and 'physical fatigue perception' is acceptable. When the personal attribute indicators of 'working load', 'age', and 'gender' are introduced, the prediction accuracy can be further improved.

Key words: engineering of communications and transportation safety, professional taxi driver, road traffic accidents, MIMIC model, path analysis, moderation effect, machine learning

中图分类号: 

  • U491

表1

出租车驾驶员身体疲劳感知、风险与分心驾驶行为频率分布"

构面问题0123456

PF

(身体疲劳感知)

SLEE33.0825.9318.5315.276.111.090
FATI16.2217.9422.0423.1312.138.410.13

RDBs

(风险驾驶行为)

BELT31.220.8321.3316.487.532.630
REDL33.8428.0217.2310.927.42.590
ARRG23.3824.8923.817.987.2810
OVTA35.323.6721.5413.635.310.540
HONK49.126.5615.816.272.2600
LAMP43.3727.4417.988.532.6800
PARK31.8724.1724.1712.256.151.380
MERG44.7523.7616.989.913.680.920

DDs

(分心驾驶行为)

HAND32.223.321.6213.937.241.710
PHONE64.1220.9111.382.720.8800

图1

道路交通事故数量统计"

图2

工作压力感知"

表2

构面相关性矩阵与题项组成(n=2391)"

构面Cronbach's αPFRTCSRDBSDDsWL题项
PF0.5361----SLEE、FATI
RTCS0.3610.710**1---PDO、PI
RDBS0.9140.763**0.861**1--

LAMP、HONK、REDL、MERG、

OVTA、BELT、PARK、AGGR

DDs0.7300.641**0.779**0.807**1-HAND、PHONE
WL0.4750.273**0.069**0.327**0.247**1HOUD、ODUT、DCOM、MFEE

图3

出租车驾驶员交通事故诱发理论框架"

图4

驾驶员标准化路径系数估计结果"

表3

中介效果估计与路径系数差异分析结果"

类别路径

参数

估计

Bias-corrected percentile

method (-95%)

Percentile method (95%)
LowerUpperpLowerUpperp
中介效果PF-Radical-RTCs0.1350.1090.1650.0010.1080.1640.001
PF-Error-RTCs0.1120.1080.1160.0010.1090.1160.001
PF-DD-RTCs0.3210.2840.3630.0010.2840.3630.001
DD-Radical-RTCs0.1760.1420.2160.0010.1410.2140.001
DD-Error-RTCs0.1120.1080.1160.0010.1090.1160.001

远程

中介效果

PF-DD-Radical-RTCS0.0990.0790.1230.0010.0780.1220.001
PF-DD-Error-RTCS0.0630.0590.0670.0010.0590.0670.001
总效果PF-RTCs1.1711.1181.2300.0011.1181.2280.001
DD-RTCs0.8600.7760.9530.0010.7750.9530.001
效果差异Radical-RTCs to Error-RTCs0.1070.0520.1660.0010.0510.1650.001
PF-RTCs to DD-RTCs0.3100.1260.5700.0010.2020.4140.001
Gender-PF to Gender-DD0.3430.1260.570.0020.1260.5690.002
WL-PF to WL-DD0.1740.1110.2320.0010.1140.2350.001
Age-PF to Age-DD0.2960.2290.3590.0010.2290.3590.001

图5

分类器准确率"

表4

分类器AUC值"

分类

特征

变量

AUC值

标准

误差

渐近

概率

95%

LCL

95%

UCL

分类

特征

变量

AUC值

标准

误差

渐近

概率

95%

LCL

95%

UCL

LRS10.8860.0074.51×10-2260.8730.899NBS10.8860.0075.43×10-2270.8740.899
S20.8770.0071.12×10-2160.8640.891S20.8780.0078.53×10-2170.8640.891
S30.9590.00300.9530.966S30.9540.00400.9460.961
S1~S30.9640.00300.9580.970S1~S30.9530.00400.9450.961
S1~S40.9720.00300.9660.977S1~S40.9540.00400.9460.962
均值0.932均值0.925
SVMS10.8510.0082.71×10-1870.8350.866RFS10.8940.0061.15×10-2350.8820.906
S20.8360.0095.42×10-1720.8190.853S20.8820.0077.59×10-2220.8690.895
S30.9460.00500.9370.955S30.9940.00100.9920.995
S1~S30.9590.00400.9510.967S1~S30.9960.00100.9950.997
S1~S40.9770.00200.9720.982S1~S40.9970.00100.9960.998
均值0.914均值0.952
1 Wang Y, Li L, Prato C G. The relation between working conditions, aberrant driving behaviour and crash propensity among taxi drivers in China[J]. Accident Analysis & Prevention, 2019, 126: 17-24.
2 Peng Z, Zhang H, Wang Y. Work-related factors, fatigue, risky behaviours and traffic accidents among taxi drivers: a comparative analysis among age groups[J]. International Journal of Injury Control and Safety Promotion, 2021, 28(1): 58-67.
3 Wang Y, Li M, Du J, et al. Prevention of taxi accidents in xi'an, China: what matters most?[J]. Central European Journal of Public Health, 2015, 23(1): 77-83.
4 Routley V, Ozanne S J, Qin Y,et al.Taxi driver seat belt wearing in nanjing,China[J].Journal of Safety Research, 2009, 40(6): 449-454.
5 Ma M, Yan X, Huang H,et al.Safety of public transportation occupational drivers: risk perception, attitudes, and driving behavior[J]. Transportation Research Record, 2010(1): 72-79.
6 Shi J, Li T, Li X, et al. A survey of taxi drivers' aberrant driving behavior in Beijing[J]. Journal of Transportation Safety & Security, 2014, 6(1): 34-43.
7 Meng F, Wong S C, Yan W,et al.Temporal patterns of driving fatigue and driving performance among male taxi drivers in hong kong: a driving simulator approach[J]. Accident Analysis & Prevention, 2019, 125: 7-13.
8 Lee S, Kim J, Park J, et al. Deep-learning-based prediction of high-risk taxi drivers using wellness data[J]. International Journal of Environmental Research and Public Health, 2020, 17(24): 17249505.
9 Peng Z, Wang Y, Luo X. How does financial burden influence the crash rate among taxi drivers? a self-reported questionnaire study in China[J]. Traffic Injury Prevention, 2020, 21(5): 324-329.
10 Sani S R H, Tabibi Z, Fassrdi J S, et al. Aggression, emotional self-regulation, attentional bias, and cognitive inhibition predict risky driving behavior[J]. Accident Analysis & Prevention, 2017, 109: 78-88.
11 Kim D, Sul J. Analysis of pedestrian accidents based on the in-vehicle real accident videos[C]∥Proceedings of 23rd International Technical Conference on the Enhanced Safety of Vehicles, Seoul, Korea, 2013: 1-12.
12 Akerstedt T, Anund A, Axelsson J,et al.Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function[J]. Journal of Sleep Research, 2014, 23(3): 240-252.
13 Boksem M A, Meijman T F, Lorist M M. Effects of mental fatigue on attention: an ERP study[J]. Cognitive Brain Research, 2005, 25(1): 107-116.
14 Ting P H, Hwang J R, Doong J L, et al. Driver fatigue and highway driving: a simulator study[J]. Physiology & Behavior, 2008, 94(3): 448-453.
15 Sullman M J, Stephens A N, Kuzu D. The expression of anger amongst Turkish taxi drivers[J]. Accident Analysis & Prevention, 2013, 56: 42-50.
16 Brandenburg S, Oehl M, Seigies K.German taxi drivers' experiences and expressions of driving anger: are the driving anger scale and the driving anger expression inventory valid measures?[J]. Traffic Injury Prevention, 2017, 18(8): 807-812.
17 程国柱,冯思鹤,史伯睿.机动车非职业驾驶人事故倾向性测评方法[J].哈尔滨工业大学学报,2021,53(9): 99-106.
Cheng Guo-zhu, Feng Si-he, Shi Bo-rui.Evaluation method for accident proneness of non-professional motor vehicle drivers[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 99-106.
18 Asefa N G, Ingale L, Shumey A,et al.Prevalence and factors associated with road traffic crash among taxi drivers in Mekelle Town, Northern Ethiopia, 2014: a cross sectional study[J]. Plos One, 2015, 10(3): 118675.
19 Mokarami M, Alizadeh S S, Pordanjani T R, et al. The relationship between organizational safety culture and unsafe behaviors, and accidents among public transport bus drivers using structural equation modeling[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65: 46-55.
20 Cheng A S K, Ting K H, Liu K P, et al. Impulsivity and risky decision making among taxi drivers in Hong kong: an event-related potential study[J]. Accident Analysis & Prevention, 2015, 95: 387-394.
21 Burns P, Wilde J S. Risk taking in male taxi drivers: relationships among personality, observational data and driver records[J]. Personality and Individual Differences, 1995, 18(2): 267-278.
22 江欣国,周悦,夏亮,等.出租车驾驶员交通违法行为演化博弈模型[J].西南交通大学学报, 2019, 54(6): 1121-1128, 1118.
Jiang Xin-guo, Zhou Yue, Xia Liang,et al.Evolutionary game model of traffic violations among taxi drivers[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1121-1128, 1118.
23 万平,吴超仲,马晓凤.基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J].吉林大学学报:工学版, 2020, 50(1): 121-131.
Wan Ping, Wu Chao-zhong, Ma Xiao-feng.Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[1] 贺宜,孙昌鑫,彭建华,吴超仲,江亮,马明. 电动载货三轮车风险行为及影响因素分析[J]. 吉林大学学报(工学版), 2023, 53(2): 413-420.
[2] 朱洁玉,马艳丽. 合流区域多车交互风险实时评估方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1574-1581.
[3] 彭涛,方锐,刘兴亮,王海玮,庞彦伟,许洪国,刘福聚,王涛. 基于典型事故场景的雪天高速换道自动驾驶策略[J]. 吉林大学学报(工学版), 2022, 52(11): 2558-2567.
[4] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[5] 李光松,李文清,李青. 基于随机性特征的加密和压缩流量分类[J]. 吉林大学学报(工学版), 2021, 51(4): 1375-1386.
[6] 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1011-1016.
[7] 程国柱,程瑞,徐亮,张文会. 基于乘员伤害分析的公路路侧事故风险评价[J]. 吉林大学学报(工学版), 2021, 51(3): 875-885.
[8] 李阳,李硕,井丽巍. 基于贝叶斯模型与机器学习算法的金融风险网络评估模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1862-1869.
[9] 方伟,黄羿,马新强. 基于机器学习的虚拟网络感知数据缺陷自动检测[J]. 吉林大学学报(工学版), 2020, 50(5): 1844-1849.
[10] 刘洲洲,尹文晓,张倩昀,彭寒. 基于离散优化算法和机器学习的传感云入侵检测[J]. 吉林大学学报(工学版), 2020, 50(2): 692-702.
[11] 王露,刘玉雯,陈红. 侧风下峡谷桥隧连接段汽车的行驶特性[J]. 吉林大学学报(工学版), 2019, 49(3): 736-748.
[12] 尹超英,邵春福,王晓全. 考虑停车可用性的建成环境对小汽车通勤出行的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 714-719.
[13] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[14] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[15] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[4] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[5] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[6] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[9] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[10] 唐新星,赵丁选,黄海东,艾学忠,冯石柱 . 改进的工程机器人立体视觉标定方法[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .