吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1842-1852.doi: 10.13229/j.cnki.jdxbgxb.20221430

• 交通运输工程·土木工程 • 上一篇    

板簧式减震锚头结构及抗震性能分析

王林峰1,2(),夏万春1,2,徐浪1,2,黄晓明3,谭国金4,张继旭1,2   

  1. 1.重庆交通大学 山区公路水运交通地质减灾重庆市高校市级重点实验室,重庆 400074
    2.重庆交通大学 河海学院,重庆 400074
    3.东南大学 交通学院,南京 211189
    4.吉林大学 交通学院,长春 130022
  • 收稿日期:2022-11-30 出版日期:2023-06-01 发布日期:2023-07-23
  • 作者简介:王林峰(1983-),男,教授,博士.研究方向:地质灾害减灾理论与技术.E-mail:wanglinfeng@cqjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600604);重庆市自然科学基金项目(cstc2020jcyj-msxmX0218)

Structure and seismic performance analysis of plate spring damping anchor head

Lin-feng WANG1,2(),Wan-chun XIA1,2,Lang XU1,2,Xiao-ming HUANG3,Guo-jin TAN4,Ji-xu ZHANG1,2   

  1. 1.Key Laboratories of Mountainous Area Highway Transportation and Transportation Geological Disaster Reduction in University of Chongqing,Chongqing Jiaotong University,Chongqing 400074,China
    2.School of Hehai,Chongqing Jiaotong University,Chongqing 400074,China
    3.School of Transportation,Southeast University,Nanjing 211189,China
    4.College of Transportation,Jilin University,Changchun 130022,China
  • Received:2022-11-30 Online:2023-06-01 Published:2023-07-23

摘要:

针对高陡边坡震致滑移条件下锚索系统无韧性、抗灾能力弱等问题,提出了一种板簧式减震锚头结构和实现方法。分析板簧锚头抗震工作程序并构建动力计算模型,对变形特性进行了解析;基于主要影响指标对板簧锚头作尺度分析,采用有限元程序获得板簧锚头抗震响应特征。研究表明:板簧锚头结构承载力和变形特性主要由片板长宽比、宽厚比、跨度和片板数决定,且对片板厚度最为敏感;激励峰值越大,其回弹恢复时间越短,整个过程能量耗散越多;本文优选尺度板簧锚头的地震响应傅里叶主频为14.73 Hz,抗震响应过程中发生往复变形及摩擦耗能以减轻地震冲击效应,具备良好的抗震性能和韧性,但应用设计时应综合考虑变形协调能力、耗能效果和经济性等因素。本文研究成果可为边坡锚索韧性组件结构的设计及应用提供理论依据和方法。

关键词: 新型锚索, 板簧减震, 边坡治理, 抗震性能

Abstract:

Aiming at the problems of non-toughness and weak disaster resistance of the anchor cable system under the condition of seismic slip on high and steep slopes, a leaf spring shock absorption anchor head structure and implementation method were proposed. The seismic working program of leaf spring anchor head was analyzed, a dynamic calculation model was constructed, and the deformation characteristics were analyzed. Based on the main influencing indicators, the scale analysis of the leaf spring anchor head was carried out, and the seismic response characteristics of the leaf spring anchor head were obtained by finite element program. The results show that the bearing capacity and deformation characteristics of the leaf spring anchor head structure are mainly determined by the aspect ratio, width-thickness ratio, span and number of plates, and are most sensitive to the thickness of the plates. With the increase of excitation peaks, the shorter the recovery time of its springback, the more energy is dissipated throughout the process. The optimal scale leaf spring anchor head seismic response Fourier main frequency is 14.73Hz, reciprocating deformation and frictional energy loss occur during the seismic response process to reduce the seismic impact effect, with good seismic performance and toughness, but the application design should comprehensively consider the deformation coordination ability, energy dissipation effect and economic factors. The research results can provide a theoretical basis and method for the design and application of slope anchor cable toughness component structure.

Key words: new type anchor cable, plate spring damping, slope treatment, seismic performance

中图分类号: 

  • TB122

图1

板簧减震锚头基本构造"

图2

板簧减震锚头抗震响应过程"

图3

板簧减震锚头受力特征"

表1

板簧锚头尺寸拟定考虑因素水平表"

因素

水平

弧高

h/mm

片板数n/片

弦长

L/mm

片板宽

b/mm

片板厚δ/mm
ABCDE
1502300908
245328011010
340326013012
440424015013

表2

正交试验方案及试验结果"

方案ABCDEwc/mmK/(kN·mm-1
150230090821.2616.44
25032801101012.1636.61
35032601301210.9643.26
4504240150139.6199.45
54522801301310.4456.33
64533001501212.2749.92
7453240901011.0829.95
8454260110814.7320.59
94022601501010.8533.28
10403240130812.5318.25
114033001101311.4071.50
12404280901213.2539.94
134022401101210.8024.41
14403260901310.6358.50
15403280150815.2821.06
164043001301013.1457.69

表3

极差分析表"

参数ABCDE
wc/mmK/(kN·mm-1wc/mmK/(kN·mm-1wc/mmK/(kN·mm-1wc/mmK/(kN·mm-1wc/mmK/(kN·mm-1
均值Ⅰ13.5048.9413.3432.6214.5248.8914.0636.2115.9519.09
均值Ⅱ12.1339.2011.9040.8212.7838.4812.2738.2811.8139.38
均值Ⅲ12.0140.7412.1841.4411.7938.9111.7743.8811.8239.38
均值Ⅳ12.4640.4112.6854.4211.0143.0212.0050.9310.5271.45
极差R1.499.741.4421.803.5110.402.2914.725.4352.36

图4

板簧减震锚头挠度、刚度与4水平关系"

图5

板簧减震锚头数值分析模型"

图6

板簧片板相对运动速度与摩擦因数关系"

图7

汶川卧龙台地震波加速度输入"

图8

锚索动力响应及锚具等效作用力"

表4

不同工况下板簧锚头激励响应"

模拟结果模拟工况总变形/mm变形耗能/kJ等效应力/MPa等效应变
A3-B2-C2-D1-E1
A2-B2-C2-D1-E1
A2-B1-C3-D2-E4
A2-B2-C3-D2-E4

图9

地震作用下板簧减震锚头最大变形"

图10

地震作用下板簧减震锚头变形总耗能"

图11

地震作用下板簧减震锚头等效弹性应变"

图12

板簧锚头跨中截面不同位置的应力"

图13

不同峰值加速度激励下板簧锚头变形响应"

图14

板簧锚头加速度响应傅里叶频谱"

图15

不同预应力下板簧锚头地震响应特征"

1 连传杰, 徐卫亚, 王亚杰, 等. 新型高强预应力让压锚杆巷道支护性能的数值模拟[J]. 岩土力学, 2010(7): 2329-2335.
Lian Chuan-jie, Xu Wei-ya, Wang Ya-jie, et al. Numerical simulation of entry performance supported by a new high-strength and high-pretension yieldable bolts[J]. Geotechnical Mechanics, 2010(7): 2329-2335.
2 许明, 唐亚锋, 刘先珊, 等. 自适应锚索锚固岩质边坡地震动力响应分析[J]. 岩土力学, 2018, 39(7): 2379-2386.
Xu Ming, Tang Ya-feng, Liu Xian-shan, et al. Seismic dynamic response analysis of rock slope anchored by adaptive anchor cable[J]. Geotechnical Mechanics, 2018, 39(7): 2379-2386.
3 董建华, 秦兆贤, 何鹏飞. 形状记忆合金式锚杆的提出及抗拔承载力学特性分析[J]. 土木工程学报, 2023, 56(4): 103-118.
Dong Jian-hua, Qin Zhao-xian, He Peng-fei. Proposal of shape memory alloy anchor rod and analysis of its uplift bearing mechanical properties[J]. Journal of Civil Engineering, 2023, 56(4): 103-118.
4 董建华, 郭瀚, 何鹏飞, 等. 气囊式框架地梁边坡支护结构力学性能分析[J/OL]. [2023-03-17].
5 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308.
He Man-chao, Guo Zhi-biao. Mechanical characteristics and engineering application of constant resistance large deformation anchor [J]. Journal of Rock Mechanics and Engineering, 2014, 33(7): 1297-1308.
6 涂兵雄, 刘士雨, 俞缙,等. 新型拉压复合型锚杆锚固性能研究:Ⅰ简化理论[J]. 岩土工程学报, 2018, 40(12): 2289-2295.
Tu Bing-xiong, Liu Shi-yu, Yu Jin, et al. Study on anchorage performance of new tension compression composite anchor: Ⅰ implified theory[J]. Journal of Geotechnical Engineering, 2018, 40 (12): 2289-2295.
7 唐春安, 赵兴东, 王维纲,等. 新型全长多点楔胀式管缝锚杆(竹节式锚杆)的试验研究[J]. 岩石力学与工程学报, 2004, 23(3): 465-468.
Tang Chun-an, Zhao Xing-dong, Wang Wei-gang, et al. Experimental study on a new full-length multi-point wedge expansion pipe joint anchor (bamboo joint anchor)[J]. Journal of Rock Mechanics and Engineering, 2004, 23(3): 465-468.
8 Liang Y, He M, Cao C, et al. A mechanical model for conebolts[J]. Computers & Geotechnics, 2017, 83: 142-151.
9 Tao Z G, Zhao Fei, Wang Hong-jian, et al. Innovative constant resistance large deformation bolt for rock support in high stressed rock mass[J]. Arabian Journal of Geosciences, 2017, 10(15): No. 341.
10 郑达, 梁力丹, 巨能攀. 低周往复荷载作用下预应力锚索震害特征研究[J]. 岩石力学与工程学报, 2015, 34(7): 1353-1360.
Zheng Da, Liang Li-dan, Ju Neng-pan. Study on seismic damage characteristics of prestressed anchor cable under low cycle reciprocating load[J]. Journal of Rock Mechanics and Engineering, 2015, 34(7): 1353-1360.
11 李伟, 宋海生, 陆浩宇, 等.复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报: 工学版, 2022, 52(4): 829-836.
Li Wei, Song Hai-sheng, Lu Hao-yu, et al. Linear identification method for hysteresis characteristics of composite plate springs[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(4): 829-836.
12 于繁华, 刘仁云, 张义民, 等. 机械零部件动态可靠性稳健优化设计的群智能算法[J]. 吉林大学学报: 工学版, 2017, 47(6): 1903-1908.
Yu Fan-hua, Liu Ren-yun, Zhang Yi-min, et al. A swarm intelligence algorithm for robust optimization design of dynamic reliability of mechanical components[J]. Journal of Jilin University (Engineering and Technolog Edition), 2017,47(6): 1903-1908.
13 Wu W J, Zhu L M, Yu X, et al. Novel method for equivalent stiffness and coulomb's damping ratio analyses of leaf spring[J]. Journal of Mechanical Science & Technology, 2012, 26(11): 3533-3538.
14 Khatkar V, Behera B K, Manjunath R N. Textile structural composites for automotive leaf spring application[J]. Composites, Part B—Engineering, 2020, 182: No.107662.
15 Zhao K, He Y H, Liu X L, et al. Multiaxial fatigue life and damage characteristics of 50CrVA spring steel under tension-bending-torsion proportional loading[J]. Journal of Materials Engineering, 2014(12): 99-103.
16 Shi G, Zhao H, Zhang S, et al. Microstructural characteristics and impact fracture behaviors of low-carbon vanadium-microalloyed steel with different nitrogen contents[J]. Materials Science and Engineering, 2020, 769: No.138501.
17 Li X, Liu Y. Improvement in microstructure and wear-resistance of high chromium cast iron/medium carbon steel bimetal with high vanadium[J]. Materials Research Express, 2021, 8(4): No.046512.
18 Dolzhenko A, Kaibyshev R, Belyakov A. Outstanding impact toughness of low-alloyed steel with fine lamellar microstructure[J]. Materials Letters, 2021, 303(5879): No.130547.
19 李杰, 张喆, 朱毅杰,等. 平衡悬架钢板弹簧模型的建立与仿真[J]. 重庆大学学报, 2011, 34(6): 31-35.
Li Jie, Zhang Zhe, Zhu Yi-jie, et al. Establishment and simulation of leaf spring model for balanced suspension[J]. Journal of Chongqing University, 2011, 34(6): 31-35.
20 董建华, 朱彦鹏, 马巍. 框架预应力锚杆边坡支护结构动力计算方法研究[J]. 工程力学, 2013, 30(5): 250-258.
Dong Jian-hua, Zhu Yan-peng, Ma Wei. Research on dynamic Calculation method of frame prestressed bolt slope support structure[J]. Engineering Mechanics, 2013, 30(5): 250-258.
[1] 邸振勇,杨新辉,林霄. 基于荷载⁃位移滞回曲线的建筑双梁⁃柱节点抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(7): 2061-2066.
[2] 闫清峰,张纪刚,王涛,陈德刚,郁有升,杨迎春. 预制预装修模块化建筑连接节点抗震性能[J]. 吉林大学学报(工学版), 2023, 53(2): 505-514.
[3] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[4] 刁延松,郭荡,屠康,焦圣伦,刘芸,刘秀丽. 新型异形钢管混凝土柱⁃钢梁节点抗震性能试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1724-1733.
[5] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[6] 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
[7] 高欣, 吴晓伟, 田俊. 轻骨料混凝土剪力墙非线性有限元模型的构成及影响其抗震性能的因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1428-1435.
[8] 李黎明,陈以一,李宁,蔡玉春. 外套管式冷弯方钢管与H型钢梁连接节点的抗震性能[J]. 吉林大学学报(工学版), 2010, 40(01): 67-0071.
[9] 孙绪杰,潘景龙,郑文忠 . 玻璃纤维增强聚合物混凝土小型空心
砌块复合墙片的抗震性能
[J]. 吉林大学学报(工学版), 2008, 38(05): 1054-1059.
[10] 李黎明,,李宁3,陈志华4,姜忻良4 . 方钢管混凝土柱的抗震性能试验研究[J]. 吉林大学学报(工学版), 2008, 38(04): 817-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!