吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2367-2375.doi: 10.13229/j.cnki.jdxbgxb20210320

• 交通运输工程·土木工程 • 上一篇    

UHPC连接的装配式剪力墙节点抗震性能试验

龚永智1(),况锦华1,柯福隆1,周泉2,罗小勇1   

  1. 1.中南大学 土木工程学院,长沙 410075
    2.中国建筑第五工程局有限公司,长沙 410004
  • 收稿日期:2021-04-12 出版日期:2022-10-01 发布日期:2022-11-11
  • 作者简介:龚永智(1978-),男,教授,博士. 研究方向:装配式结构,钢-混组合结构.E-mail:gyzcsu@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51978662);湖南省自然科学基金项目(2020JJ4652);中南大学中央高校基本科研业务费专项项目(1053320192849)

Experiment on seismic behavior of assembled shear wall joints connected by ultra high performance concrete

Yong-zhi GONG1(),Jin-hua KUANG1,Fu-long KE1,Quan ZHOU2,Xiao-yong LUO1   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.CSCEC Fifth Engineering Bureau Co. ,Ltd. ,Changsha 410004,China
  • Received:2021-04-12 Online:2022-10-01 Published:2022-11-11

摘要:

基于新型外剪内框的建筑结构体系,提出了一种利用超高性能混凝土(UHPC)连接装配式混凝土剪力墙节点的方式。为了探究该连接方式下剪力墙的抗震性能,进行了1个普通现浇混凝土剪力墙和2个UHPC连接的装配式混凝土剪力墙的低周反复试验。试验结果表明:两种连接方式下的剪力墙试件破坏规律相同,均为弯曲破坏;在轴压比相同的条件下,UHPC连接的装配式混凝土剪力墙10dd为最大纵筋直径)的极限抗弯承载力仅比普通现浇混凝土剪力墙低5.61%;UHPC能够确保装配式混凝土剪力墙连接段强度,UHPC连接下的装配式剪力墙具有良好的抗震性能和较好的延性;在整个加载过程中,3个剪力墙试件表现出相近的刚度退化和耗能变化规律。在试验的基础上,本文通过有限元软件ABAQUS模拟发现,有限元模拟结果和试验结果吻合较好;当试件钢筋搭接长度达到16d时,试件的承载能力、刚度以及墙角的抬升量处于最佳状态。

关键词: 结构工程, 装配式, 剪力墙, 超高性能混凝土(UHPC), 抗震性能

Abstract:

Based on the new building structure system with external shear and internal frame, a method of connecting prefabricated concrete shear walls joints with ultra-high performance concrete (UHPC) is proposed. In order to explore the seismic performance of shear walls under this connection mode, low cyclic tests were carried out on one ordinary cast-in-place concrete shear wall and two fabricated concrete shear walls connected by UHPC.Test results show that:The failure law of shear wall specimens under the two connection modes is the same, which is flexural failure;Under the same axial compression ratio, the ultimate flexural capacity of prefabricated concrete shear walls connected by UHPC in 10d is only 5.61% lower than that of ordinary cast-in-place concrete shear walls;UHPC can ensure the strength of assembled concrete shear wall connection section, and the prefabricated shear walls under UHPC connection have good seismic performance and good ductility. During the whole loading process, the three shear wall specimens show similar stiffness degradation and energy consumption change rules. On the basis of the experiment, the finite element software ABAQUS simulation shows that the finite element simulation results are in good agreement with the experimental results. When the lap length of steel bars reaches 16d, the bearing capacity, stiffness and the lifting amount of corner are in the best condition.

Key words: structural engineering, assembled, shear wall, ultra-high performance concrete (UHPC), seismic performance

中图分类号: 

  • TU375.2

图1

外剪内框结构体系示意图"

图2

UHPC连接装配式混凝土剪力墙的施工方案"

图3

试验构件的尺寸及配筋详图"

表1

UHPC配合比 (kg/m3)"

水泥粉煤灰硅灰石英砂减水剂钢纤维
690240172991.8

30.9

(2.8%)

187.3120

表2

试件编号及基本参数"

试件编号轴压比预制墙体高/mm底部连接情况
W10.2-杯口基础
W20.22880UHPC,连接段120 mm
W30.22850UHPC,连接段150 mm

表3

钢筋的力学性能"

钢材类型直径/mm

屈服强度fy

/MPa

抗拉强度fu

/MPa

HRB40014439.8596.8
12459.5604.2
8431.0612.7

图4

试验加载装置图"

图5

加载制度"

图6

各试件最终破坏形态图"

图7

各试件滞回曲线和骨架曲线"

表4

试件不同状态时的水平力和位移"

试件

编号

加载

方向

开裂点屈服点峰值点破坏点

延性

系数

Fcr/kNΔcr/mmFy/kNΔy/mmFp/kNΔp/mmFu/kNΔu/mm

W1

正向240.01.2550.07.1689.130.7495.561.87.91
反向270.01.4500.07.1687.425.7523.550.6
平均255.01.3525.07.1688.328.2509.556.2

W2

正向397.03.9593.07.1641.221.2505.740.56.29
反向405.02.6615.06.3658.221.7535.043.8
平均401.03.3604.06.7649.721.5520.442.2
W3正向200.02.7414.118.3502.640.6420.074.05.35
反向200.05.1240.07.8331.430.9273.066.1
平均200.03.9327.113.1417.035.8346.570.1

图8

刚度退化曲线"

表5

试件各特征点的等效粘滞阻尼系数"

特征点等效粘滞阻尼系数ξeq
W1W2W3
开裂点0.230.200.17
屈服点0.170.180.12
峰值点0.180.250.13
破坏点0.220.240.15

图9

试验现象对比图"

图10

荷载-位移曲线对比图"

图11

不同钢筋搭接长度下的试件有限元模型分析图"

1 赵唯坚, 郭婉楠, 金峤, 等. 预制装配式剪力墙结构竖向连接形式的发展现状[J]. 工业建筑, 2014, 44(4): 115-121, 59.
Zhao Wei-jian, Guo Wan-nan, Jin Qiao, et al. Development status of vertical connection forms of prefabricated shear wall structures[J]. Industrial Architecture, 2014, 44(4): 115-121, 59.
2 李宁波, 钱稼茹, 叶列平, 等. 竖向钢筋套筒挤压连接的预制钢筋混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(1): 31-40.
Li Ning-bo, Qian Jia-ru, Ye Lie-ping, et al. Experimental study on seismic behavior of precast reinforced concrete shear walls connected by vertical reinforced sleeve compression[J]. Journal of Building Structure, 2016, 37(1): 31-40.
3 王墩, 吕西林, 卢文胜. 带接缝连接梁的预制混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(10): 1-11.
Wang Dun, Lv Xi-lin, Lu Wen-sheng. Experimental study on seismic behavior of precast concrete shear walls with jointed beams[J]. Journal of Building Structures, 2013, 34(10): 1-11.
4 张海顺. 预制混凝土结构插入式预留孔灌浆钢筋锚固搭接试验研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2009.
Zhang Hai-shun. Experimental study on anchorage lap of grouted reinforcement with inserted pre-hole in precast concrete structure[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2009.
5 Gu Qian, Dong Ge, Wang Xiang, et al. Research on pseudo-static cyclic tests of precast concrete shear walls with vertical rebar lapping in grout-filled constrained hole[J]. Engineering Structures, 2019, 189: 396-410.
6 钱稼茹, 杨新科, 秦珩, 等. 竖向钢筋采用不同连接方法的预制钢筋混凝土剪力墙抗震性能试验[J]. 建筑结构学报, 2011, 32(6): 51-59.
Qian Jia-ru, Yang Xin-ke, Qin Heng, et al. Experimental study on seismic performance of precast reinforced concrete shear walls with different connection methods for vertical reinforcement[J]. Journal of Building Structures, 2011, 32(6): 51-59.
7 钱稼茹, 彭媛媛, 秦珩, 等. 竖向钢筋留洞浆锚间接搭接的预制剪力墙抗震性能试验[J]. 建筑结构, 2011, 41(2): 7-11.
Qian Jia-ru, Peng Yuan-yuan, Qin Hang, et al. Experimental study on seismic performance of prefabricated shear wall with mortar anchor indirectly overlapped with vertical reinforcement holes [J]. Building Structure, 2011, 41(2): 7-11.
8 姜洪斌, 陈再现, 张家齐, 等. 预制钢筋混凝土剪力墙结构与拟静力试验研究[J]. 建筑结构学报, 2011, 32(6): 34-40.
Jiang Hong-bin, Chen Zai-xian, Zhang Jia-qi, et al. Study on precast reinforced concrete shear wall structure and quasi-static test[J]. Journal of Building Structures, 2011, 32(6): 34-40.
9 姜洪斌, 张海顺, 刘文清, 等. 预制混凝土插入式预留孔灌浆钢筋搭接试验[J]. 哈尔滨工业大学学报, 2011, 43(10): 18-23.
Jiang Hong-bin, Zhang Hai-shun, Liu Wen-qing, et al. Lap test of precast concrete grouting reinforcement with inserted reserved holes[J]. Journal of Harbin Institute of Technology, 2011, 43(10): 18-23.
10 Wang De-hui, Shi Cai-jun, Wu Ze-mei, et al. A review on ultra high performance concrete: part II.hydration microstructure and pro perties [J]. Construction and Building Materials, 2015, 96: 368-377.
11 Yoo D Y, Banthia N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review [J]. Cement and Concrete Composites,2016, 73(5): 267-280.
12 Alkaysi M, El-Tawil S. Factors affecting bond development between ultra high performance concrete (UHPC) and steel bar reinforcement [J]. Construction and Building Materials, 2017, 144: 412-422.
13 Shafieifar M, Farzad M, Azizinamini M. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 156: 402-411.
14 Farzad M, Shafieifar M, Azizinamin A. Experimental and numerical study on bond strength between conventional concrete and ultra high-performance concrete (UHPC)[J].Engineering Structures, 2019, 186: 297-305.
15 Wu Ze-mei, Shi Cai-jun, He Wen, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete [J]. Construction and Building Materials, 2016, 103: 8-14.
16 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1): 141-149.
Wang De-hui, Shi Cai-jun, Wu Lin-mei. Research and application of ultra-high performance concrete in China[J]. Silicate Bulletin, 2016, 35(1): 141-149.
17 邵旭东, 邱明红. 基于UHPC材料的高性能装配式桥梁结构研发[J]. 西安建筑科技大学学报: 自然科学版, 2019, 51(2): 160-167.
Shao Xu-dong, Qiu Ming-hong. Research and development of high performance fabricated bridge structure based on UHPC material[J]. Journal of Xi 'an University of Architecture and Technology (Natural Science Edition), 2019, 51(2): 160-167.
18 Safdar M, Matsumoto T, Kakuma K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157: 448-460.
19 Xu Shen-chun, Wu Cheng-qing, Liu Zhong-xian, et al. Experimental investigation of seismic behavior of ultra-high performance steel fiber reinforced concrete columns[J]. Engineering Structures, 2017, 152: 129-148.
20 童小龙, 方志, 罗肖. 活性粉末混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(1): 21-30.
Tong Xiao-long, Fang Zhi, Luo Xiao. Experimental study on seismic behavior of reactive powder concrete shear walls[J]. Journal of Building Structures, 2016, 37(1): 21-30.
21 郑七振, 刘阳阳, 龙莉波,等. 超高性能混凝土连接的装配式现浇混凝土框架抗震性能[J]. 工业建筑, 2019, 49(10): 85-91.
Zheng Qi-zhen, Liu Yang-yang, Long Li-bo, et al. Seismic behavior of fabricated cast-in-place concrete frames connected by ultra-high performance concrete [J]. Industrial Architecture, 2019, 49(10): 85-91.
22 冯军骁, 郑七振, 龙莉波, 等. 超高性能混凝土连接的预制梁受弯性能试验研究[J]. 工业建筑, 2017, 47(8): 59-65.
Feng Jun-xiao, Zheng Qi-zhen, Long Li-bo, et al. Experimental study on flexural behavior of precast beams connected by ultra-high performance concrete[J]. Industrial Architecture, 2017, 47(8): 59-65.
23 ,混凝土结构设计规范 [S].北京:中国建筑工业出版社,2010.
24 ,建筑抗震试验规程 [S].北京:中国建筑工业出版社,2015.
25 王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究[D].长沙: 湖南大学土木工程学院,2016.
Wang Xing-wang. Study on shear behavior of interface between UHPC and ordinary reinforced concrete structure[D]. Changsha: School of Civil Engineering, Hunan University, 2016.
[1] 褚云朋,孙鑫晖,李明,姚勇,黄汉杰. 下击暴流作用下圆形马鞍面屋盖风压特性[J]. 吉林大学学报(工学版), 2022, 52(8): 1826-1833.
[2] 姚勇,苏留锋,李明,褚云朋,黄汉杰. 下击暴流作用下双面球壳型屋面风载特性[J]. 吉林大学学报(工学版), 2022, 52(3): 615-625.
[3] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[4] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
[5] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
[6] 陈剑斌,周宋泽,费峰永,陈永龙,凌国平. 过盈量及滚花方式对装配式凸轮轴压装失效的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1959-1966.
[7] 刁延松,郭荡,屠康,焦圣伦,刘芸,刘秀丽. 新型异形钢管混凝土柱⁃钢梁节点抗震性能试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1724-1733.
[8] 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305.
[9] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[10] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
[11] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[12] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[13] 宫亚峰,宋加祥,毕海鹏,谭国金,胡国海,林思远. 装配式箱涵结构缩尺模型静载试验及有限元分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1728-1738.
[14] 樊学平,屈广,刘月飞. 应用新数据同化算法的桥梁极值应力预测[J]. 吉林大学学报(工学版), 2020, 50(2): 572-580.
[15] 宫亚峰,王博,谭国金,张立敏,吴文丁,毕海鹏. 吉林省两种典型装配式箱涵受力特性对比分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1865-1870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!