吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3589-3600.doi: 10.13229/j.cnki.jdxbgxb.20230105
Xin CHENG1,2(
),Sheng-xian LIU1,Jing-mei ZHOU3(
),Zhou ZHOU1,Xiang-mo ZHAO1
摘要:
为加强对小目标的感知,在F-PointNet网络的基础上,结合密集连接方法和高斯距离特征,提出了FDG-PointNet三维目标检测模型,融合高斯距离特征作为附加注意力特征,有效改善了F-PointNet网络实例分割准确率不高的问题,增强了对点云视锥体中的噪声的过滤;基于密集连接可以加强特征提取的特点,改进主干特征提取PointNet++网络,加强点云特征重用,缓解特征提取过程中对小目标的特征提取程度过低与梯度消失问题,提高三维目标边界框回归的准确性。研究结果表明:本文算法在简单、中等、困难三个难度等级下对汽车、行人、骑行人3种类别的检测整体优于基准方法F-PointNet,在中等难度下对汽车、行人、骑行人的检测分别取得71.12%、61.23%、55.71%的平均检测精度,其中对行人检测提升最明显,在简单和中等难度下提升幅度分别达5.5%和3.1%。综上所述,本文的FDG-PointNet算法有效解决了F-PointNet中小物体检测的低准确性问题,具有较强的适用性。
中图分类号:
| 1 | Cheng X, Zhou J M, Liu P Y, et al. 3D vehicle object tracking algorithm based on bounding box similarity measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15844-15854. |
| 2 | Cheng X, Zhou J M, Song J C, et al. A highway traffic image enhancement algorithm based on improved GAN in complex weather conditions[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8716-8726. |
| 3 | Yurtsever E, Lambert J, Carballo A, et al. A survey of autonomous driving: common practices and emerging technologies[J]. IEEE Access, 2020, 8: 58443-58469. |
| 4 | Cui Y D, Chen R, Chu W B, et al. Deep learning for image and point cloud fusion in autonomous driving: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 722-739. |
| 5 | Zhou Y, Tuzel O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4490-4499. |
| 6 | Lang A H, Vora S, Caesar H, et al. PointPillars: fast encoders for object detection from point clouds [C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12697-12705. |
| 7 | Yan Y, Mao Y X, Li B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337. |
| 8 | Deng J J, Shi S S, Li P W, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1201-1209. |
| 9 | Li B. 3D fully convolutional network for vehicle detection in point cloud[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017: 1513-1518. |
| 10 | 程鑫, 王宏飞, 周经美, 等. 基于体素柱形的激光雷达点云车辆目标检测算法[J]. 中国公路学报, 2023, 36(3): 247-260. |
| Cheng Xin, Wang Hong-fei, Zhou Jing-mei, et al. Vehicle detection algorithm based on voxel pillars from lidar point clouds[J]. China Journal of Highway and Transport, 2023, 36(3): 247-260. | |
| 11 | Qi C R, Su H, Mo K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77-85. |
| 12 | Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]∥Advances in Neural Information Processing Systems, Long Beach, USA, 2017: 5105 - 5114 . |
| 13 | Shi S S, Wang X G, Li H S. PointRCNN: 3D object proposal generation and detection from point cloud[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 770-779. |
| 14 | Yang Z T, Sun Y A, Liu S, et al. 3DSSD: point-based 3D single stage object detector[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11040-11048. |
| 15 | Yang Z T, Sun Y A, Liu S, et al. STD: sparse-to-dense 3D object detector for point cloud[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, USA, 2019: 1951-1960. |
| 16 | Shi W J, Rajkumar R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,USA, 2020: 1711-1719. |
| 17 | Yin T W, Zhou X Y, Krahenbuhl P. Center-based 3D object detection and tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11784-11793. |
| 18 | Chen X Z, Ma H M, Wan J, et al. Multi-view 3D object detection network for autonomous driving[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1907-1915. |
| 19 | Ku J, Mozifian M, Lee J, et al. Joint 3D proposal generation and object detection from view aggregation[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: No.8594049. |
| 20 | Qi C R, Liu W, Wu C X, et al. Frustum PointNets for 3D object detection from RGB-D data[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 918-927. |
| 21 | Vora S, Lang A H, Helou B, et al. PointPainting: sequential fusion for 3D object detection[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4604-4612. |
| 22 | Xu D F, Anguelov D, Jain A. PointFusion: deep sensor fusion for 3D bounding box estimation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 244-253. |
| 23 | Wang Z X, Jia K. Frustum ConvNet: sliding frustums to aggregate local point-wise features for amodal 3D object detection[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019: 1742-1749. |
| 24 | Huang G, Liu Z, Maaten L, et al. Densely connected convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700-4708. |
| 25 | Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
| 26 | Klokov R, Lempitsky V. Escape from cells: deep kd-networks for the recognition of 3D point cloud models[C]∥Proceedings of the IEEE International Conference on Computer Vision, Honolulu, USA, 2017: 863-872. |
| 27 | Li J X, Chen B M, Lee G H. SO-Net: self-organizing network for point cloud analysis[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9397-9406. |
| 28 | Graham B, Engelcke M, Maaten L. 3D semantic segmentation with submanifold sparse convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9224-9232. |
| [1] | 陶博,颜伏伍,尹智帅,武冬梅. 基于高精度地图增强的三维目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 802-809. |
| [2] | 李雪梅,王春阳,刘雪莲,谢达. 基于SESTH的线性调频连续波激光雷达信号时延估计[J]. 吉林大学学报(工学版), 2022, 52(4): 950-958. |
| [3] | 院老虎,连冬杉,张亮,刘义. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报(工学版), 2021, 51(5): 1635-1641. |
| [4] | 宗长富,文龙,何磊. 基于欧几里得聚类算法的三维激光雷达障碍物检测技术[J]. 吉林大学学报(工学版), 2020, 50(1): 107-113. |
| [5] | 潘海阳, 刘顺安, 姚永明. 基于深度信息的自主空中加油技术[J]. 吉林大学学报(工学版), 2014, 44(6): 1750-1756. |
| [6] | 尚涛, 贺会超, 王昕, 宫文斌, 戴永强. 二维激光雷达实现三维成像的算法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 91-95. |
|