吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1227-1236.doi: 10.13229/j.cnki.jdxbgxb.20220814

• 车辆工程·机械工程 • 上一篇    

面向电铲自主装卸的矿用自卸车斗型优化

谭晓丹1(),王勇澎2,Hall Robert3,徐天爽1(),黄庆学4   

  1. 1.吉林大学 机械与航空航天工程学院,长春 130022
    2.太原重型机械集团有限公司 矿山采掘装备及智能制造国家重点实验室,太原 030024
    3.南达科他州矿业理工大学 采矿工程与管理学院,拉皮德城 57701
    4.太原理工大学 机械与运载工程学院,太原 030024
  • 收稿日期:2022-06-29 出版日期:2024-05-01 发布日期:2024-06-11
  • 通讯作者: 徐天爽 E-mail:nanlingTXD@163.com;xts@jlu.edu.cn
  • 作者简介:谭晓丹(1989-),女,博士研究生.研究方向:工程装备优化设计与智能化技术. E-mail: nanlingTXD@163.com
  • 基金资助:
    山西省揭榜招标项目(20191101014);国家自然科学基金项目(52105100)

Haul truck dump body optimization for autonomous shovel loading

Xiao-dan TAN1(),Yong-peng WANG2,Robert Hall3,Tian-shuang XU1(),Qing-xue HUANG4   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Mining Equipment and Intelligent Manufacturing,Taiyuan Heavy Industry Co. ,Ltd. ,Taiyuan 030024,China
    3.Department of Mining Engineering and Management,South Dakota School of Mines and Technology,Rapid City 57701,USA
    4.College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2022-06-29 Online:2024-05-01 Published:2024-06-11
  • Contact: Tian-shuang XU E-mail:nanlingTXD@163.com;xts@jlu.edu.cn

摘要:

针对现有电铲自主装卸功能在料堆重构、环境感知、目标识别等领域存在技术难度的现状,从降低自主装卸作业任务难度的角度出发,本文提出了一种以载荷均衡分布为目标的矿用自卸车斗型优化方法。首先,构建了一种基于差分迭代的装卸后自卸车斗内料堆的轮廓重构方法,并对料堆质心位置进行计算;其次,建立并验证了模拟电铲装卸过程的离散元仿真方法;再次,利用离散元仿真实验,研究了不同斗型结构参数对斗内料堆质心位置的影响;最后,以横向载荷均布为目标,以纵向载荷分布、行驶安全性、斗容变化为约束对斗型进行优化。结果表明:优化后的斗型与原斗型相比,在保持装载能力和行驶安全性的前提下,极端装卸位置时的载荷分布均匀性显著提升,并具有更大的合理装卸面积和更高的作业效率。

关键词: 机械设计及理论, 自主装卸, 矿用自卸车, 载荷分布, 斗型优化

Abstract:

To reduce the difficulty in autonomous loading operations, a mining haul truck dump body optimization method for payload balancing is constructed. Firstly, a differential iterative algorithm for reconstruction of material pile in dump body was built for calculation of center of gravity. Secondly,based on such calculation algorithm, the discrete element method (DEM) simulation for loading operation was constructed and validated. Thirdly, the influence of dump body structure on position of piled material gravity center was studied using DEM simulation experiments. At last, an optimization on dump body structure was accomplished with the object of payload balancing in cross section and the restraints of longitudinal payload distribution, safety and capacity. The comparison results indicate that the optimized dump body can generate more balanced payload distribution in extreme loading positions. Besides, it has larger loading area and higher operation efficiency.

Key words: mechanical design and theory, autonomous loading, mining haul truck, payload distribution, dump body optimization

中图分类号: 

  • U469.4

图1

装卸后矿用自卸车斗内偏载与底盘失效"

图2

矿用自卸车料斗坐标系"

图3

自卸车斗内各区域轮廓线交点计算"

图4

基于缩比模型的载荷分布测量系统"

图5

基于缩比模型的料堆轮廓测量系统"

图6

卸料位置示意图"

表1

载荷分布实测与计算结果对比"

装卸位置数据Msum/kgx/mmy/mmz/mm
1测量值6.6924.6564.81-
计算值6.5324.9564.0763.79
ea0.160.300.74-
er/%2.391.221.14-
2测量值7.814.6387.45-
计算值7.934.5387.8570.00
ea0.120.090.41-
er/%1.541.940.47-
3测量值5.06-26.75117.19-
计算值5.20-26.55117.3460.23
ea0.140.200.15
er/%2.770.750.13-
P01测量值7.941.7465.35-
计算值8.031.7065.9870.02
ea0.090.040.63-
er/%1.132.300.96-
P02测量值7.300.7768.92-
计算值7.450.7669.6069.97
ea0.150.010.68
er/%2.051.300.99-

表2

物料装卸离散元仿真颗粒参数设置"

颗粒类型真实形状仿真颗粒质量分数/%
针片状20
棱锥状64
立方体16

图7

不同装卸位姿条件下物料堆积形态仿真与实验对比"

表3

离散元仿真与实测结果对比"

位置数据θ1/(°)θ2/(°)θ3/(°)θ4/(°)M/kgx/mmy/mmz/mm
1实测332525357256464
仿真332526326255866
ea00131062
er/%0048.614.309.43.1
2实测20262017858870
仿真22282019848569
ea22020131
er/%107.7011.80203.41.4
3实测273316275-2711760
仿真283417245-2712661
ea11130091
er/%3.736.311.1007.71.7
P01实测28222020826670
仿真27222020826471
ea10000021
er/%3.60000031.4
P02实测26231921717070
仿真26221821817170
ea01101010
er/%04.35.3014.301.40

表4

离散元仿真参数设置"

参数符号数值单位
剪切模量EG107Pa
泊松比κr0.25-
物料密度μρ2652kg/m3
恢复系数(颗粒-颗粒)Cp0.15-
恢复系数(颗粒-刚体)Cw0.5-
静摩擦系数(颗粒-颗粒)fs0.56-
滚动摩擦系数(颗粒-颗粒)fr0.1-
静摩擦系数(颗粒-刚体)?s0.7-
滚动摩擦系数(颗粒-刚体)?r0.15-

图8

矿用自卸车斗型优化机理"

图9

横截面卸料实验示意图"

图10

纵截面卸料实验示意图"

表5

横截面实验结果"

x/mmα=0°α=10°α=20°α=30°
β=0°-42.1037-40.4551-34.5286-30.7583
β=15°-36.0689-34.9911-29.7266-29.9357
β=30°-27.5441-28.562-25.5524-26.6968
β=45°-24.3589-23.3156-23.3531-23.3987
z/mmα=0°α=10°α=20°α=30°
β=0°49.956755.020760.701566.4349
β=15°50.887456.914260.998566.0667
β=30°54.909458.616761.814766.7795
β=45°65.454266.840265.583467.3634

表6

横截面函数拟合参数表"

ip00p10p01p20p11p02R2
x-29.812.0795.272-0.032-1.726-0.2660.97
z59.204.2733.0780.114-2.1701.6970.97

图11

优化前后料斗结构对比"

表7

优化前后结构参数"

参数α1/(°)α2/(°)H/mmB/mmβ1/(°)β2/(°)L/mm
优化前0.00.010525012.065.0311
优化后25.20.01052509.668.4311

表8

不同卸料位置下质心位置对比"

卸料位置Gx /mmGy /mmGz /mm总质量/kg
原型优化原型优化原型优化原型优化
125.0417.4358.4066.1665.9170.725.966.00
23.922.9384.9689.7868.8674.527.907.73
3-26.86-20.04129.99136.5060.5359.614.764.72

表9

优化前后悬架载荷分配对比 (%)"

悬架载荷分布装卸位置1装卸位置3
优化前优化后优化前优化后
左前27.2723.123.412.99
右前12.9813.967.615.37
差异14.299.164.202.38
左后49.7045.9912.8321.49
右后10.0616.9376.1470.14
差异39.6429.0663.3148.65

图12

质心高度变化对应转向半径-速度对比"

图13

卸料范围几何定义"

表10

自主卸料范围对比"

数值优化前优化后
Xl/mm-7.74-14.86
Xu/mm7.7414.86
X/mm15.4829.72
Yl/mm45.4320.68
Yu/mm94.3681.53
Y/mm48.9360.85
面积/mm2757.441808.46

图14

自卸车倾倒效率"

表11

自卸车散料倾倒效率对比"

数值优化前优化后
倾倒开始时刻/s15.7516.14
倾倒完成时刻/s20.0019.72
总时长/s4.253.58
1 王继新, 季景方, 张英爽, 等. 基于小波分形理论的工程车辆时域载荷信号降噪方法[J]. 吉林大学学报:工学版, 2011, 41(): 221-225.
Wang Ji-xin, Ji Jing-fang, Zhang Ying-shuang, et al. Denoising method of time domain load signals of engineering vehicles based on wavelet and fractal theory[J].Journal of Jilin University (Engineering and Technology Edition), 2011, 41(Sup.2): 221-225.
2 Duff E. Automated volume estimation of haul-truck loads[C]. ACRA 2000, Melbourne, Australia, 2000: 179-184.
3 LeRoy G, Philip T. Process for three-dimensional modeling and design of off-highway dump bodies[P]. United States Patent: US008113763B2, 2012-02-14.
4 LeRoy G. Method of estimating the volumetric carrying capacity of a truck body[P]. United States Patent: USOO8280596B2, 2012-10-02.
5 SAE J1363. Capacity rating—dumper body and trailer body [S].
6 LeRoy G. Adapting the off-highway truck body volumetric process to real world conditions[C]∥SAE International Off-Highway and Powerplant Congress and Exposition, Milwaukee USA, 2000.
7 Joshua C. Haul truck payload modelling using strut pressures[D]. Edmonton: School of Mining & Petroleum Engineering, University of Alberta, 2015.
8 Sun X, Li X, Xiao D, et al. A method of mining truck loading volume detection based on deep learning and image recognition[J]. Sensors, 2021, 21(2): 635.
9 Yao Z, Huang Q, Ji Z, et al. Deep learning-based prediction of piled-up status and payload distribution of bulk material[J]. Automation in Construction, 2021, 121: 103424.
10 Javier G, Tito A, Francisco Y, et al. Point cloud-based estimation of effective payload volume for earthmoving loaders[J]. Automation in Construction, 2020, 117: 103207.
11 Mi C, Gu Z, Zhang Y, et al. Frame weight and anti-fatigue co-optimization of a mining dump truck based on Kriging approximation model[J]. Engineering Failure Analysis, 2016, 66: 99-109.
12 Mi C, Gu Z, Yang Q, et al. Frame fatigue life assessment of a mining dump truck based on finite element method and multibody dynamic analysis[J]. Engineering Failure Analysis, 2012, 23: 18-26.
13 申焱华,魏福林,石博强. 基于退化过程的矿用自卸车货箱磨损预测分析[J]. 中国机械工程, 2016, 27(21): 2846-2850, 2854.
Shen Yan-hua, Wei Fu-lin, Shi Bo-qiang. Wear prediction analysis of mining dump truck body based on degradation processes[J]. China Mechanical Engineering, 2016, 27(21): 2846-2850, 2854.
14 邓阳庆,王登峰,王建华, 等. 面向用户的重型自卸车节油研究[J]. 吉林大学学报:工学版,2009, 39(): 74-77.
Deng Yang-qing, Wang Deng-feng, Wang Jian-hua, et al. User-oriented fuel economy study on heavy-duty tipper[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(Sup.1): 74-77.
15 Soofastaei A, Aminossadati S M, Kizil M S,et al. A comprehensive investigation of loading variance influence on fuel consumption and gas emissions in mine haulage operation[J]. International Journal of Mining Science and Technology, 2016, 26(6): 995-1001.
16 Chamanara A. Enhancing mine haul truck KPIs via payload balance[D]. Edmonton: School of Mining & Petroleum Engineering, University of Alberta, 2013.
17 郑宏宇, 杨硕, 文良浒, 等. 基于电控制动系统的客车防侧翻控制策略[J]. 吉林大学学报: 工学版, 2016, 46(4): 1038-1043.
Zheng Hong-yu, Yang Shuo, Wen Liang-hu, et al. Anti-rollover control strategy of bus based on electronically controlled braking system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016,46(4): 1038-1043.
18 陈东辉, 吕建华, 龙刚, 等. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报: 工学版,2018,48(4): 1176-1183.
Chen Dong-hui, Jian-hua Lyu, Long Gang, et al. Static rollover stability of semi-mounted agricultural machinery based on ADAMS[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(4): 1176-1183.
[1] 孙伟,杨俊. 等角贴敷压电分流片圆柱壳有限元建模及减振分析[J]. 吉林大学学报(工学版), 2024, 54(2): 365-374.
[2] 胡斌,蔡一全,罗昕,毛自斌,李俊伟,郭孟宇,王剑. 基于种群胁迫的有限齿侧空间高速充种理论与试验[J]. 吉林大学学报(工学版), 2024, 54(2): 574-588.
[3] 刘洋. 动臂塔机防后倾缓冲力计算方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2785-2794.
[4] 赵洋,肖洋,孙皓,霍文浩,冯松,廖勇. 基于围道积分的润滑接触齿轮微点蚀损伤特征模拟[J]. 吉林大学学报(工学版), 2022, 52(4): 799-810.
[5] 郑伟,孙见君,马晨波,於秋萍,张玉言,牛韬. 汽车轮毂加工夹具的研究现状及展望[J]. 吉林大学学报(工学版), 2022, 52(1): 25-36.
[6] 陈魏,雷雨龙,李兴忠,付尧,扈建龙,侯利国. 低速工况下渐开线圆柱直齿轮齿面粘着磨损计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1628-1634.
[7] 郭震,于红英,滑忠鑫,赵娣. 刚性折纸机构运动分析及折叠过程仿真[J]. 吉林大学学报(工学版), 2020, 50(1): 66-76.
[8] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[9] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[10] 王继新, 翟新婷, 毕野虹天, 李莺莺. 基于AIC-K-means的载荷分段混合分布估计[J]. 吉林大学学报(工学版), 2018, 48(4): 1092-1098.
[11] 赵春江, 梁波, 葛世东, 黄庆学. 求解高速球轴承载荷分布的简化矩阵模型[J]. 吉林大学学报(工学版), 2010, 40(06): 1595-1598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!