吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 537-545.doi: 10.13229/j.cnki.jdxbgxb.20230515

• 交通运输工程·土木工程 • 上一篇    

基于模块化车辆的区域灵活接驳公交线路优化

高天洋(),胡大伟(),姜瑞森,吴雪,刘慧甜   

  1. 长安大学 运输工程学院,西安 710064
  • 收稿日期:2023-05-23 出版日期:2025-02-01 发布日期:2025-04-16
  • 通讯作者: 胡大伟 E-mail:tianyang@chd.edu.cn;dwhu@chd.edu.cn
  • 作者简介:高天洋(1997-),男,博士研究生.研究方向:公交线路优化.E-mail:tianyang@chd.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划重点项目(2021JZ-20);长安大学研究生科研创新实践项目(300103723064)

Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system

Tian-yang GAO(),Da-wei HU(),Rui-sen JIANG,Xue WU,Hui-tian LIU   

  1. College of Transportation Engineering,Chang'an University,Xi'an 710064,China
  • Received:2023-05-23 Online:2025-02-01 Published:2025-04-16
  • Contact: Da-wei HU E-mail:tianyang@chd.edu.cn;dwhu@chd.edu.cn

摘要:

乘客出行需求的时空分布不均影响公交的服务水平,新兴的模块化车辆可以通过灵活拆分车节适应出行需求的时空分布。因此,本文建立一种考虑模块化车辆的区域灵活接驳公交线路优化模型,模型以车辆运营成本、固定成本以及乘客乘车时间成本组成的系统总成本最小为目标,采用一种多智能体遗传算法对模型求解,并通过算例测试了算法的有效性。最后,基于西安市“捷巴士”的服务区域以及站点设计数值实验,结果表明:相比固定容量的接驳公交,考虑模块化车辆可以减少约18.31%的系统总成本,给未来城市公交的发展提供了新思路。

关键词: 交通运输规划与管理, 区域灵活接驳公交, 模块化车辆, 公交线路优化, 多智能体遗传算法

Abstract:

The uneven spatial-temporal distribution of passenger demand affects the level of public transportation service. The emerging modular vehicle system can adapt to the spatial-temporal demand changes by changing the number of modular vehicle units flexibly. Therefore, a zonal-based flexible feeder bus routes optimization model considering the modular vehicle system is established. The model aims at minimizing the total system cost consisting of vehicle operation cost, fixed cost and passenger travel time cost, and solves the model using a multi-agent genetic algorithm combining genetic algorithm and multi-intelligence system. Finally, numerical experiments based on the service area and stops of Xi'an “Jie Bus” are designed. The results show that the total cost can be reduced by about 18.31% by considering the modular vehicle system compared with the traditional fixed-capacity feeder bus system, which provides a new idea for the future development of urban public transportation.

Key words: transportation planning and management, zonal-based flexible feeder bus, modular vehicle system, optimization of bus routes, multi-agent genetic algorithm

中图分类号: 

  • U491

图1

模块化车辆系统"

图2

考虑模块化车辆系统的区域灵活接驳公交线路优化问题示意图"

表1

模型符号说明"

符号说明
集合N乘客需求点集合,N=1,2,3,,n
K车辆集合,K={1,2,3,?,k}
R模块化车辆车节集合,R={1,2,3,?,r}
D公交接驳站点集合,D=0,n+1
V公交服务网络中所有节点的集合,V=N?D
参数Cr车节为r的模块化车辆的单位运营成本
Fr车节为r的模块化车辆的单位固定使用成本
CkFC固定容量巴士系统中车辆的单位运营成本
FkFC固定容量巴士系统中车辆的单位固定使用成本
β乘客乘车的单位时间成本
M一个无穷大的数
n单个模块化车辆车节的容量
QkFC固定容量巴士系统中车辆的容量
dij站点ij的行驶距离
qi站点i的乘客人数
si车辆在站点i处的服务时间
tij站点ij的行驶时间
[ei,li]需求点i处乘客的时间窗
v车辆运行速度
Tmax允许车辆行驶的最长运行时间
ns所有站点数量的总和
变量uik与子回路消除约束相关的辅助变量
Lik车辆k到达站点i时车内的乘客人数
Tik车辆k到达站点i的时间
yik0-1决策变量,yik=1,表示车辆k服务站点i,否则yik=0
xijk0-1决策变量,xijk=1,表示车辆k经过弧(i,j),否则xijk=0
yikFC0-1决策变量,yikFC=1,表示固定容量车辆k服务站点i,否则yikFC=0
xijkFC0-1决策变量,xijkFC=1,表示固定容量车辆k经过弧(i,j),否则xijkFC=0
zkr0-1决策变量,zkr=1,表示车辆kr个车节组成,否则zkr=0

图3

多智能体网格"

表2

多智能体遗传算法伪代码"

Input:LsizeGitermaxSGitermaxPcPmSPm

Output: 最优智能体L*,能量值EL*

1 随机生成初始智能体网格L,评估智能体的能量值

2 t11t21

3 while t1Gitermax do

4 for i=1:Lsize

5 for j=1:Lsize

6 对智能体Lij执行邻域竞争操作

7 end

8 end

9 for i=1:Lsize

10 for j=1:Lsize

11 if 随机产生的值p小于邻域交叉概率Pc

12 对智能体Lij执行邻域交叉操作

13 end

14 end

15 end

16 for i=1:Lsize

17 for j=1:Lsize

18 if 随机产生的值p小于变异概率Pm

19 对智能体Lij执行变异操作

20 end

21 end

22 end

23 在新的智能体网格中选择能量值最高的Lbestt1做以下操作

24 while t2SGitermax do

25 对智能体Lbestt1执行自学习算子1

26 if 随机产生的值p小于变异概率SPm

27 对Lbestt1执行随机两点变异操作,得到新的SLnewt2

28 end

29 if ESLnewt2>ELbestt1

30 Lbestt1SLnewt2

31 else

32 对Lbestt1执行自学习算子2,得到新的SLnewt2

33 if ESLnewt2>ELbestt1

34 Lbestt1SLnewt2

35 end

36 end

37 t2t2+1

38 end

39 t1t1+1

40 end

表3

MAGA参数取值"

算例规模(需求点)5~1015~3040~50
初始智能体网格大小379
MAGA的迭代次数50100200
自学习算子中的迭代次数103040
交叉概率Pc0.60.60.6
变异概率Pm0.150.150.15
自学习算子变异概率SPm0.150.150.15

表4

LINGO与MAGA求解结果对比"

算例LINGOMAGA
最优值时间/s最优值平均值平均时间/s
R102-53 788.96413 788.93 788.92.03
R102-105 796.64 0525 796.65 796.65.63
R102-157 2008 295.98 295.914.44
R102-307 20016 953.216 981.251.21
R102-507 20031 787.331 883.5165.70

图4

R102-15的目标函数迭代图"

图5

R102-15求解结果图"

表5

MAGA与SA求解结果对比"

求解结果SA(2021)17MAGA(本文算法)
线路10-1-10-8-11-00-5-18-17-0
线路20-7-4-2-3-00-7-11-8-10-0
线路30-9-16-15-12-00-1-4-2-3-6-0
线路40-13-14-19-20-00-9-16-15-14-0
线路50-17-18-5-6-00-13-12-19-20-0
总成本最优值135.86126.73
平均计算时间/s-16.4

图6

西安市“捷巴士”运营区域及乘客需求点位置示意图"

表6

部分乘客需求信息"

站点位置人数时间窗
1[108.961143,34.158944]2[8:00,8:09]
2[108.967018,34.159049]3[8:05,8:16]
3[108.974744,34.160356]4[8:00,8:09]
4[108.974726,34.152902]5[8:00,8:10]
5[108.97266,34.14751]2[8:05,8:13]
????

表7

参数取值"

参数取值
r1-6
n6
QkFC36
Fr/(元·km-1[1.3125,2.625,3.9375,5.25,6.5625,7.875]
Cr/(元·km-1[1.001,1.799,2.429,2.919,3.297,3.598]
FkFC/(元·km-17.875
CkFC/(元·km-13.598
v/(km·h-130
β/(元·min-10.63
si/min0.5
Tmax/min20

表8

不同模型求解结果对比"

结果MVS-ZBFFBFCFBS
总成本/元351.06429.73
车辆数/辆54
车辆容量[24,24,18,24,6][36,36,36,36]
平均满载率/%94.7262.5
运营总距离/km25.1720.79
运营成本/元66.7374.81
固定成本/元116.04163.72
乘客时间成本/元168.29191.20

图7

MVS-ZBFFB最优线路求解结果图"

表9

本文模型求解结果"

线路优化路径人数车型/r满载率/%
123-3-11-19-18-9-17-2323495.8
223-4-22-12-21-23244100
323-1-2-15-5-6-2317394.4
423-14-13-8-7-16-2320483.3
523-20-10-2361100

图8

FCFBS最优线路求解结果图"

1 苗一迪. 柔性路径公交车服务区域的决策模型研究[D]. 大连: 大连理工大学经济管理学院, 2011.
Miao Yi-di. A decision-making model for determining the service area of a flexible-route bus[D]. Dalian: Economics and Management School, Dalian University of Technology, 2011.
2 靳文舟, 胡为洋, 邓嘉怡, 等. 基于混合算法的需求响应公交灵活调度模型[J]. 华南理工大学学报: 自然科学版, 2021, 49(1): 123-133.
Jin Wen-zhou, Hu Wei-yang, Deng Jia-yi, et al. Flexible scheduling model of demand responsive transit based on hybrid algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(1): 123-133.
3 Huang A L, Dou Z Q, Qi L Z, et al. Flexible route optimization for demand-responsive public transit service[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(12): 1-15.
4 Melis L, Sörensen K. The static on-demand bus routing problem: large neighborhood search for a dial-a-ride problem with bus station assignment[J]. International Transactions in Operational Research, 2022, 29(3): 1417-1453.
5 孙继洋, 黄建玲, 陈艳艳, 等. 面向多目标站的灵活型公交路径优化调度模型[J]. 交通运输系统工程与信息, 2019, 19(6): 105-111.
Sun Ji-yang, Huang Jian-ling, Chen Yan-yan, et al. Flexible bus route optimization scheduling model for multi-target stations[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 105-111.
6 孙继洋, 黄建玲, 陈艳艳, 等. 响应动态需求的灵活型公交路径优化调度模型[J]. 北京工业大学学报, 2021, 47(3): 269-279.
Sun Ji-yang, Huang Jian-ling, Chen Yan-yan, et al. Flexible bus route optimal scheduling model in response to dynamic demand[J]. Journal of Beijing University of Technology, 2021, 47(3): 269–279.
7 Sun Q, Chien S, Hu D W, et al. Optimizing multi-terminal customized bus service with mixed fleet[J]. IEEE Access, 2020, 8: 156456-156469.
8 汪怡然, 陈景旭, 王岳平, 等. 考虑服务公平性的定制公交动态响应方案[J]. 吉林大学学报: 工学版, 2022, 52(11): 2574-2581.
Wang Yi-ran, Chen Jing-xu, Wang Yue-ping, et al. Instant demand-responsive scheme for customized bus considering service fairness[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2574-2581.
9 孙倩, 胡大伟, 钱一之, 等. 考虑车辆随机到站时间的动态需求响应型接驳公交线路优化[J]. 交通运输系统工程与信息, 2022, 22(5): 196-204.
Sun Qian, Hu Da-wei, Qian Yi-zhi, et al. Dynamic bus routing optimization for demand-responsive feeder transit considering stochastic bus arrival time[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 196-204.
10 杨明, 黄乐. 面向早高峰通勤客流的多车型定制公交线网优化[J]. 长沙理工大学学报: 自然科学版, 2020, 17(3): 71-78.
Yang Ming, Huang Le. Network optimization of multi-vehicle-type customized bus for commuting demand during morning peak hour[J]. Journal of Changsha University of Science & Technology (Natural Science), 2020, 17(3): 71-78.
11 裴明阳. 灵活公共交通系统营运调度模型与方法研究[D]. 广州: 华南理工大学交通学院, 2020.
Pei Ming-yang. Operational design models for flexible transit systems[D]. Guangzhou: School of Transportation, South China University of Technology, 2020.
12 Ji Y X, Liu B, Shen Y, et al. Scheduling strategy for transit routes with modular autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10: 121-135.
13 范文博, 陈香, 刘涛. 模块化自动驾驶穿梭公交服务频率优化及时刻表设计[J]. 交通运输工程与信息学报, 2023, 21(2): 160-176.
Fan Wen-bo, Chen Xiang, Liu Tao. Modular autonomous shuttle transit service: frequency setting and timetabling[J]. Journal of Transportation Engineering and Information, 2023, 21(2): 160-176.
14 Dai Z, Liu X Y, Chen X, et al. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: a dynamic programming approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 598-619.
15 Pei M Y, Lin P Q, Du J, et al. Vehicle dispatching in modular transit networks: a mixed-integer nonlinear programming model[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 147: 102240.
16 Liu X H, Qu X B, Ma X L. Improving flex-route transit services with modular autonomous vehicles[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102331.
17 吴典文, 彭宇, 田奇, 等. 基于停靠站选址的响应型接驳公交调度优化[J]. 公路工程, 2021, 46(5): 176-182.
Wu Dian-wen, Peng Yu, Tian Qi, et al. Scheduling optimization for responsive feeder transit based on the stop location[J]. Highway Engineering, 2021, 46(5): 176-182.
[1] 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197.
[2] 郑长江,陶童统,陈志超. 基于流量可调重分配的级联失效模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2441-2450.
[3] 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222.
[4] 闫云娟,查伟雄,石俊刚,严丽平. 基于随机充电需求的充电桩优化双层模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2238-2244.
[5] 曲大义,刘浩敏,杨子奕,戴守晨. 基于车路协同的交通瓶颈路段车流动态分配机制及模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2187-2196.
[6] 陈桂珍,程慧婷,朱才华,李昱燃,李岩. 考虑驾驶员生理信息的城市交叉口风险评估方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1277-1284.
[7] 赵晓华,刘畅,亓航,欧居尚,姚莹,郭淼,杨海益. 高速公路交通事故影响因素及异质性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 987-995.
[8] 杨秀建,贾晓寒,张生斌. 考虑汽车队列动态特性的混合交通流特性[J]. 吉林大学学报(工学版), 2024, 54(4): 947-958.
[9] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[10] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[11] 王殿海,胡佑薇,蔡正义,曾佳棋,姚文彬. 基于BPR函数的城市道路间断流动态路阻模型[J]. 吉林大学学报(工学版), 2023, 53(7): 1951-1961.
[12] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[13] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
[14] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
[15] 杨敏,张聪伟,李大韦,马晨翔. 基于贝叶斯网的空铁联程乘客出行满意度模型[J]. 吉林大学学报(工学版), 2023, 53(10): 2839-2846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!