吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 388-391.

• 论文 • 上一篇    下一篇

基于多体系统理论的精密立式加工中心精度建模与预测

刘志峰, 刘广博, 程强, 玄东升, 蔡力钢   

  1. 北京工业大学 机械工程与应用电子技术学院, 北京 100124
  • 收稿日期:2011-04-15 出版日期:2012-03-01 发布日期:2012-03-01
  • 通讯作者: 程强(1979-),男,讲师.研究方向:产品设计方法学.E-mail:hgdchengqiang@126.com E-mail:hgdchengqiang@126.com
  • 作者简介:刘志峰(1973-),男,副教授.研究方向:CAE,机械传动,精密加工.E-mail:lzf@bjut.edu.cn
  • 基金资助:

    国家重大科技专项项目(2009ZX04001-024,2010ZX04001-041),国家自然科学基金项目(51005003, 51075006).

Precision modeling and prediction of precise vertical machining center based on theory of multi-body system

LIU Zhi-feng, LIU Guang-bo, CHENG Qiang, XUAN Dong-sheng, CAI Li-gang   

  1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2011-04-15 Online:2012-03-01 Published:2012-03-01

摘要: 为了对机床加工精度进行事先预测并验证设计方案的合理性,分析了几何误差因素,基于多体系统理论建立了精密立式加工中心的精度预测模型。用拓扑结构和低序体阵列描述了多体系统间的关联性。基于齐次变换矩阵描述体与体之间的坐标变换关系,推导出多体系统中任意两相邻体之间各种运动的特征矩阵和相对运动方程,最终建立了精密立式加工中心精度预测模型,并以模拟加工典型试件为基础,实现了对机床的精度预测。预测分析表明,基于多体系统的精度建模可以有效抽象地描述精密立式加工中心的系统结构,并实现加工精度的合理预测,为机床设计方案的改进及精度分配提供了重要的依据。

关键词: 机械设计, 精度设计, 多体系统, 精度建模, 精度预测

Abstract: In order to predict the machining precision of the machine tool and validate its design concept, the geometric errors of a precise vertical machining center were analyzed, and its precision prediction model was established based on the multi-body system theory. The correlations among the multi-bodies were described with the topology structure and the low-order body array. The coordinate transformation relationships between multi-bodies were described based on the homogeneous transformation matrix. The characteristic matrix and the relative motion equations of the motions between 2 arbitrary adjacent objects of the multi-body system were derived. A precision prediction model was built for the precise vertical machining center. Based on the simulated machining of a typical workpiece, the precision prediction of the machine tool was realized. The results showed that the proposed precision model can describe the systemic structure of the vertical machining center effectively and abstractively, predict the machining precision reasonably, provide a basis for the improvement of the machine tool design concept and the precision deployment.

Key words: mechanical design, precision design, multi-body system, precision modeling, accuracy prediction

中图分类号: 

  • TH161
[1] Jha B K, Kumar A. Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile[J]. International Journal of Machine Tools & Manufacture,2003,4(6):629-636.

[2] Kong L B, Cheung C F, To S, et al. A kinematics and experimental analysis of form error compensation in ultra-precision machining[J]. International Journal of Machine Tools & Manufacture,2008,48:1408-1419.

[3] Jung Ji-Hun,Choi Jin-Phil,Lee Sang-Jo. Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement[J]. Journal of Materials Processing Technology,2006,174:56-66.

[4] 粟时平.多轴数控机床精度建模与误差补偿方法研究.长沙:国防科学技术大学,2002. Su Shi-ping. Study on the methods of precision modeling and error compensation for multi-axis CNC machine tools.Changsha: National University of Defense Technology,2002.

[5] 粟时平,李圣怡.五轴数控机床综合空间误差的多体系统运动学建模[J].组合机床与自动化加工技术, 2003,5:15-21. Su Shi-ping, Li Sheng-yi. Modeling the volumetric synthesis error of 5-axis machine tools based on multi-Body system kinematics[J]. Modular Machine Tool & Automatic Manufacturing Technique,2003, 5:15-21.

[6] 刘国良,张宏韬,任永强,等.数控机床几何误差综合建模及其专家系统[J].现代制造工程,2005(7):1-4. Liu Guo-liang, Zhang Hong-tao, Ren Yong-qiang,et al. Modeling principles and expert system for geometrical error synthesis model of NC machining centers[J]. Modern Manufacturing Engineering,2005(7):1-4.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[15] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!