›› 2012, Vol. ›› Issue (06): 1592-1596.

• 论文 • 上一篇    下一篇

基于非下采样轮廓波的多曝光工件图像Retinex增强方法

李骜1, 李一兵1, 刘丹丹2, 杨晓冬1   

  1. 1. 哈尔滨工程大学, 信息与通信工程学院, 哈尔滨, 150001;
    2. 黑龙江科技学院 现代制造加工中心, 哈尔滨 150001
  • 收稿日期:2011-09-29 出版日期:2012-11-01
  • 通讯作者: 李一兵(1967-),男,教授,博士生导师.研究方向:认知无线电,超宽带信号检测与处理,图像处理.E-mail:liyibing@hrbeu.edu.cn E-mail:liyibing@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(50904025);船舶工业国防科技预研项目(10J3.1.6).

Retinex enhancement method of multi-exposure workpiece images based on NSCT

LI Ao1, LI Yi-bing1, LIU Dan-dan2, YANG Xiao-dong1   

  1. 1. Institute of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
    2. Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, Harbin 150001, China
  • Received:2011-09-29 Online:2012-11-01

摘要: 针对多曝光工件图像动态范围低、反光面多、易产生过饱和现象等问题,提出了一种针对工件图像序列的Retinex方法。引入光照模型,解决现有方法中没有充分考虑光照条件与曝光时间的缺陷。增强不同曝光时间的LDR(Low dynamic range)图像序列,并将一般的单个图像Retinex处理过程扩展至图像序列,综合序列中各幅图像提供的信息。为了更好地保护边缘信息,还采用具有多方向带通特性的非下采样轮廓波(Non-subsample contourlet transform,NSCT)变换先分解出细节、近似分量子图,再分离近似分量图像的照射、反射分量,从序列中选取各分量图像的最优组合用于增强。试验结果表明:该方法能够有效去除工件图像反光面的过饱和现象,同时提升了图像的视觉动态范围。

关键词: 信息处理技术, 图像增强, 多曝光图像, 非下采样轮廓波, Retinex

Abstract: To overcome the problems in muti-exposure workpiece images, such as Low Dynamic Range (LDR), more reflective surfaces and excessive saturation, we propose a method of Retinex for enhancing the LDR image order, which extends the processing of Retinex on single image to image sequence and synthesizes the information from each image in the sequence. Introducing the illumination model, the proposed method solves the drawback that the traditional algorithm did not consider the influences of the illumination condition and the exposure time sufficiently. In addition, for protecting the edge, we decompose the approximate and detail components by the Nonsubsampled Contourlet Transform (NSCT), which has the band-pass character with multi-direction. Meanwhile, we separate the illumination and reflection components from the low approximate sub-image and select the optimal component combination. The results show that our proposed method not only removes the super-saturation of some reflective panels, but also promotes the visual dynamic range availably.

Key words: information processing technology, image enhancement, multi-exposure images, non-subsampled contourlet, Retinex

中图分类号: 

  • TN911.73
[1] Meylan L, Süsstrunk S. High dynamic range image rendering with a Retinex-based adaptive filter[J]. IEEE Transaction on Image Processing, 2006,15(9):2820-2830.
[2] Jung J, Park H, Kang S, et al. Measurement of initial motion of a flying golf ball with multi-exposure image for screen-golf[J]. IEEE Trans on Consumer Electronics,2010,52(2):516-523.
[3] 李洪兵,余成波,张冬梅,等. 基于脊波变换的手指静脉图像增强研究[J]. 重庆邮电大学学报:自然科学版,2011,23(2):224-230. Li Hong-bing,Yu Cheng-bo,Zhang Dong-mei,et al. Study on finger vein image enhancement based on ridgelet transformation[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2011,23(2):224-230.
[4] Edwin Land. The Retinex theory of color vision[J]. Seientific Ameriea, 1977,237 (6):108-129.
[5] Ahmed A M T. Automatic color retrieval using the Retinex and its max white intrinsic property[C]//The 7th International Conference on Informatics and Systems, Cairo, Egypt,2010:1-5.
[6] Xiong W H, Funt B. Stereo retinex[J]. Image and Vision Computing,2009,27(1/2):178-188.
[7] Nayar S K, Mitsunaga T. High dynamic range imaging spatially varying pixel exposures[C]//IEEE Conference on Computer Vision and Pattern Recognition, USA, 2000,1:472-479.
[8] 张丽芳,周军. 利用多曝光对图像进行动态范围增强[J].数据采集与处理,2007,22(4):417-422. Zhang Li-fang, Zhou Jun. Dynamic range enhancement using multi-exposed images[J]. Journal of Data Acquisition & Processing,2007,22(4):417-422.
[9] Mertens T, Kautz J, Van Reeth F. Exposure fusion: A simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009,28(1): 161-171.
[10] Lee T H, Ha Ho-Gun, Ha Y H. Adaptive color enhancement based on multi-scaled Retinex using local contrast of the input image[C]//International Symposium on Optomechatronic Technologies, Toronto,2010:1-6.
[11] Jang I S, Park K H. Color correction by estimation of dominant chromaticity in g-scaled retinex[J]. Journal of Image Science and Technology, 2009, 53(5):1-11.
[12] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transaction on Image Processing, 2005, 14(12):2091-2106.
[13] Cunha A L, Zhou Jian-ping, Do M N. The nonsubsampled contourlet transform:theory, design, and applications[J]. IEEE Trans. On Image Processing, 2006, 15(10):3089-3101.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!