吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 96-100.

• 论文 • 上一篇    下一篇

高维变换域中的系数集中分析及研究

桑爱军, 崔海廷, 王墨林, 陈贺新   

  1. 吉林大学 通信工程学院,长春 130022
  • 收稿日期:2012-05-23 发布日期:2013-06-01
  • 通讯作者: 王墨林(1960-),男,副教授.研究方向:信号检测.E-mail:wang_molin@sohu.com E-mail:wang_molin@sohu.com
  • 作者简介:桑爱军(1973-),女,博士,教授.研究方向:多维视频流编解码.E-mail:sangaj@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(61171078);吉林大学科学前沿与交叉学科创新项目(201103256).

Coefficients concentration analysis and research in high-dimensional transformation domain

SANG Ai-jun, CUI Hai-ting, WANG Mo-lin, CHEN He-xin   

  1. College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2012-05-23 Published:2013-06-01

摘要:

针对多视角视频中包含巨大的数据信息,考虑到对存储和传输造成的困难,第一次推导了多视角视频的傅里叶变换(FT)以及多维矢量矩阵离散余弦变换(MVM-DCT)公式。结合多维矢量矩阵可以将多视角视频表示在一个多维的数学模型中以及DCT正交性的优点,推导出的MVM-DCT能够很好地去除空间、帧间和视角间的相关性。导出公式表明,高维变换域中的系数能量主要集中在一个沿时间维度和视角维度均衰减的折叠平面体上,通过仿真实验证明了理论推导的正确性。该公式推导的意义在于揭示了运动矢量,角度变量与高维变换域中系数集中分布的关系。并研究有关运动分析的最小化补充准则。这些将为多视角视频编码系统的进一步压缩提供了理论上的指导。

关键词: 信息处理技术, 多维矢量矩阵, 正交变换, 多视角视频编码

Abstract:

For the enormous data information contained in multi-view video,taking into account the difficulties of storage and transmission,the transform domain features of Fourier transform (FT) and multi-dimensional vector matrix discrete cosine transform (MVM-DCT) of multi-view video are deduced for the first time.Combined with the advantages that multi-dimensional vector matrix could put multi-view video into a multi-dimensional mathematical model,as well as orthogonality of DCT,MVM-DCT deduced could remove correlation among space,inter-frame and inter-view.The deduced formula shows that coefficient energy in high-dimensional transformation domain is mainly concentrated in a folding cuboid which attenuates along both the time dimension and view dimension.Then the experimental simulation verified their correctness.The significance of formula derivation is that they reveal the relationship between motion vector,angle variable and coefficients concentration in high-dimensional transformation domain.Finally,introduce minimize additional criteria about motion analysis briefly.All these will provide a theoretical guidance for the further compression of multi-view video coding system.

Key words: information processing, multi-dimensional vector matrix, orthogonal transformation, multi-view video coding

中图分类号: 

  • TN919.81

[1] Zhou Yuan,Hou Chun-ping,Cui Han,et al.Analysis of transmission-induved distortion for multi-view video [J].The True Vision-Capture,Transmission and Display of 3D Video,2010:1-4.

[2] Wang Shi-gang,Wang Xue-jun,Chen He-xin.Stereoscopic video compression coding based on H.264 [J].Chinese Journal of Stereology and Image Analysis,2008,3 (13):11-16.

[3] Peng Zong-ju,Yu Mei,Jiang Gang-yi,et al.Fast macroblock mode selection algorithm for multiview depth video coding [J].Chinese Optics Letters,2010,8(2):151-154.

[4] Merkle P,Morvan Y,Smolic A,et al.The effects of multiview depth video compression on multiview rendering [J].Signal Processing:Image Communication,2009,1 (24):73-88.

[5] Sang Heon Lee,Sang Hwa Lee,Jeong Hyu Yang,et al.A motion vector prediction method for multi-view video coding [C]// International Conference on Intelligent Information Hiding and Multimedia Signal Processing,2008:1247-1250.

[6] Sang Ai-jun,Chen Mian-shu,Chen He-xin,et al.Multi-dimensional vector matrix theory and its application in color image coding [J].Imaging Science Journal,2010,58 (3):171-176.

[7] Lowe D G.Three-dimensional object recognition from single two-dimensional images [J].Artificial Intelligence,1987,31 (7):355-395.

[8] Nikola Bo?inovié,Janusz Konrad.Motion analysis in 3D DCT domain and its application to video coding [J].Signal Processing:Image Communication,2005,20 (6):510-528.

[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!