吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (05): 1359-1366.doi: 10.7964/jdxbgxb201305034

• 论文 • 上一篇    下一篇

基于多属性特征胎记的软件盗版检测

罗养霞1,2, 房鼎益1   

  1. 1. 西北大学 信息科学与技术学院, 西安 710120;
    2. 西安财经学院 信息学院, 西安 710100
  • 收稿日期:2013-01-09 出版日期:2013-09-01 发布日期:2013-09-01
  • 通讯作者: 房鼎益(1959- ),男,教授,博士生导师.研究方向:网络与信息安全,无线传感器网络及其应用.E-mail:dyf@nwu.edu.cn E-mail:dyf@nwu.edu.cn
  • 作者简介:罗养霞(1974- ),女,讲师,博士研究生.研究方向:软件安全,系统安全.E-mail:yxluo8836@163.com
  • 基金资助:

    国家自然科学基金项目(61070176,61170218,61272461);国家级大学生创新项目(201211560009);陕西省自然科学基础项目(2012JM8034);陕西省教育厅科研计划项目(2013JK1200).

Software piracy detection based on birthmarks of multi-attribute features

LUO Yang-xia1,2, FANG Ding-yi1   

  1. 1. School of Information Science and Technology, Northwest University, Xi'an 710120, China;
    2. School of Information, Xi'an University of Finance and Economics, Xi'an 710100, China
  • Received:2013-01-09 Online:2013-09-01 Published:2013-09-01

摘要:

针对传统单属性特征在抗攻击性和检测率方面的不足,提出了基于分类多属性特征的软件盗版检测算法。通过对等价语义变换后的软件集合进行静态分析、提取过滤、分割和度量,最后按相似度构造分类器,在低开销下综合判别未知软件版本信息。给出了算法的描述,刻画了算法的实现过程,实验结果表明,该算法在提高判别的鲁棒性、可信度和抗攻击方面具有适用性,与同类方法比较也具有明显优势。

关键词: 计算机应用, 多属性特征, 分类, 特征度量

Abstract:

To cope with the insufficiency of single-attribute features in anti-aggression and in detecting software theft, an algorithm to detect software piracy is proposed based on classification of multi-attribute features. In order to detect software piracy with better accuracy and lower overhead, after semantics-preserving transformations of the software, the algorithm extracts features by the following steps: disassembly analysis, extraction and selection, segmentation and metrics, construction of classifier according to similarities. The algorithm is described and its implementation is depicted. Experiment results show that the algorithm is feasible in improving the robustness and credibility of identification, and resistance to attacks. It overperforms existing similar methods.

Key words: computer application, multi-attribute features, classification, feature metrics

中图分类号: 

  • TP309

[1] Aiken A, Schleimer S, Auslander J, et al. Method and apparatus for indexing document content and content comparison with World Wide Web search service[P]. US Patents:6757675,2004-06-29.

[2] University of California-Berkeley. Moss: a system for detecting software plagiarism[M/OL].[2005-09-22] www cs berkeley edu/aiken/moss html.

[3] Tamada H, Nakamura M, Monden A, et al. Design and evaluation of birthmarks for detecting theft of java programs[C]//Proceedings of the International Conference on Software Engineering. Austria:ACTA,2004.

[4] Myles G, Collberg C. Detecting software theft via whole program path birthmarks[J].Information Security, 2004, 3225(9): 404-415.

[5] Tamada H, Okamoto K, Nakamura M, et al. Dynamic software birthmarks to detect the theft of win-dows applications[C]//Proceedings of the 8th International Symposium on Future Software Technology, Xi'an, China,2004.

[6] Park Heewan, Lim Hyun-Il, Choi Seokwoo, et al. A static java birthmark based on oper and stack behaviors[C]//Proceedings of the 2008 International Conference on Information Security and Assurance, Washington, USA,2008.

[7] Myles G, Collberg C. K-gram based software birthmarks[C]//Proceedings of the the Symposium on Applied Computing New York, USA,2005.

[8] Lim H, Park H, Choi S, et al. A static java birthmark based on control flow edges[C]//Proceedings of the IEEE 33rd Computer Software and Applications Conference, 2009.

[9] Zhou X, Sun X, Sun G, et al. A combined static and dynamic software birthmark based on component dependence graph[C]//Proceedings of the IEEE 2008 Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China,2008.

[10] 赵玉洁, 房鼎益, 顾元祥, 等. 代码混淆算法有效性评估[J].软件学报, 2012, 23(3): 700-711. Zhao Yu-jie, Fang Ding-yi, Gu Yuan-xiang,et al. Evaluation of code obfuscating transformation[J].Chinese Journal of Software, 2012, 23(3): 700-711.

[11] Proietti M, Pettorossi A. Semantics preserving transformation rules for Prolog[C]//Proceedings of Partial Evaluation and Semantics-based Program Evaluation,ACM,1991.

[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!