吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (06): 1551-1557.doi: 10.7964/jdxbgxb201306020

• 论文 • 上一篇    下一篇

热冲压钢板氧化行为对传热动力学性能的影响

常颖1,2, 李烨1, 盈亮1,2, 卢金栋2, 唐行辉2, 郭威3   

  1. 1. 大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024;
    2. 大连理工大学 汽车工程学院, 辽宁 大连 116024;
    3. 吉林大学 材料科学与工程学院, 长春 130022
  • 收稿日期:2012-10-12 出版日期:2013-11-01 发布日期:2013-11-01
  • 通讯作者: 盈亮(1983-),男,博士研究生.研究方向:热冲压制造及数值模拟分析.E-mail:yingliang364@foxmail.com E-mail:yingliang364@foxmail.com
  • 作者简介:常颖(1978-),女,副教授.研究方向:金属热处理.E-mail:yingc@dlut.edu.cn
  • 基金资助:

    国家自然科学基金项目(10932003,11272075);"973"国家重点基础研究发展计划项目(2010CB832700);中央高校基本科研业务费专项资金项目(DUT12LK03);国家工信部04重大专项项目(2011ZX04001-021).

Effect of oxidation behavior on heat transfer dynamics performance of hot stamping steel

CHANG Ying1,2, LI Ye1, YING Liang1,2, LU Jin-dong2, TANG Xing-hui2, GUO Wei3   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China;
    3. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2012-10-12 Online:2013-11-01 Published:2013-11-01

摘要:

基于静态失重及金相测定法,获得了不同保温时间下典型热冲压钢板22MnB5的高温氧化规律,建立了适用于热冲压钢板氧化失重及厚度减薄的氧化回归方程;并将等效接触换热系数引入到考虑氧化脱碳层的热冲压换热反求数值计算模型中,研究了氧化行为对热冲压过程传热性能的影响规律,分析了氧化脱碳层厚度和载荷因素对等效接触换热系数的动力学影响。结果表明:在900 ℃加热条件下,保温开始阶段板料的氧化速率较高,4~5 min后逐渐减缓。1.6 mm冷轧热冲压钢板B1500HS最高单位面积氧化失重为0.471 mg/mm2,最大减薄厚度为99.3 μm,氧化脱碳层最大深度为87.0 μm,氧化过程遵循抛物线规律,其氧化失重与减薄回归方程的复相关系数达0.95以上,拟合程度良好。等效接触换热系数与氧化层厚度的关系呈反比关系,并随界面载荷的增加而增大,氧化行为对热冲压过程传热动力学性能有重要影响作用。

关键词: 金属材料, 热冲压, 22MnB5, 氧化行为, 接触换热系数, 传热动力学

Abstract:

Based on static weight loss method and metallographic method, this paper investigated the effect of soaking time on the oxidation behavior of typical cold rolled hot stamping steel 22MnB5. With the results of the thickness of oxidation and decarburization scales, the regression equations of weight loss and reduction of oxide scales were built. The characteristic parameter named equivalent interfacial-heat-transfer-coefficient (IHTC) was got by inverse numerical calculation with ABAQUS, which was taken to describe the effects of thickness of oxidation and decarburization scales and loads based on related heat transfer dynamics performance in process of hot stamping. The results indicate that the weight loss per unit area and thickness reduction of B1500HS steel with 1.6mm thickness can reach 0.471 mg/mm2 and 99.3 μm respectively, the depth of decarburization can reach 87.0 μm at 900 ℃. The oxidation of the mentioned steels obeys the parabolic law, which presents high oxidation rate at initial stage of soaking, then slows down obviously after 4~5 min. The multiple correlation coefficients between regression analysis and weight loss and reduction of oxide scales are over 0.95. The equivalent IHTC has negative relationship with the thickness of oxidation scale and it also increases with the interface load. The results show that oxidation behavior has a significant influence on heat transfer dynamics performance in hot stamping process.

Key words: metallic materials, hot stamping, 22MnB5, oxidation behavior, interfacial heat transfer coefficient, heat transfer dynamics

中图分类号: 

  • TG142.1

[1] Naderi M, Ketabchi M, Abbasi M, et al. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping[J]. Journal of Materials Processing Technology, 2011,211(6): 1117-1125.

[2] Mori K, Ito D. Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil[J]. CIRP Annals-Manufacturing Technology, 2009,58(1):267-270.

[3] Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010,210(15):2103-2118.

[4] Tondini F, Bosetti P, Bruschi S. Heat transfer in hot stamping of high strength steel sheets[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011,225(10): 1813-1824.

[5] 邢磊,张立文,张兴致,等. TP2铜与3Cr2W8V模具钢的瞬态接触换热系数[J]. 中国有色金属学报,2010, 20(4): 662-666. Xing Lei, Zhang Li-wen, Zhang Xing-zhi, et al. Transient contact heat transfer coefficient between TP2 copper and 3Cr2W8V die steel[J]. The Chinese Journal of Nonferrous Metals,2010, 20(4): 662-666.

[6] Merklein M, Lechler J, Stoehr T. Investigations on the thermal behavior of ultra high strengh boron manganese steels within hot stamping[J]. International Journal of Material Forming, 2009, 2: 259-262.

[7] Shojaefard M H, Goudarzi K. The numerical estimation of thermal contact resistance in contacting surfaces[J]. American Journal of Applied Sciences,2008, 5(11): 1566-1571.

[8] Slowik J, Borchardt G, Hler C K, et al. Influence of oxide scales on heat transfer in secondary cooling zones in the continuous casting process: Part II. Determination of material properties of oxide scales on the steel under spray-water cooling conditions[J]. Steel Research International,1990, 60(7): 302-311.

[9] Wendelstorf R, Spitzer K H, Wendelstorf J. Effect of oxide layers on spray water cooling heat transfer at high surface temperatures[J]. International Journal of Heat and Mass Transfer, 2008, 51(19-20): 4892-4901.

[10] 赵越,杨功显,袁超,等. 铸造镍基高温合金K447的高温氧化行为[J]. 腐蚀科学与防护技术,2007, 19(1): 1-4. Zhao Yue, Yang Gong-xian, Yuan Chao, et al. Isothermal oxidation behavior of a cast Ni-base superalloy K447[J]. Corrosion Science and Protection Technology, 2007, 19(1): 1-4.

[11] 贺连芳,赵国群,李辉平,等. 基于响应曲面方法的热冲压硼钢B1500HS淬火工艺参数优化[J]. 机械工程学报,2011,47(8):77-82. He Lian-fang, Zhao Guo-qun, Li Hui-ping, et al. Optimization of quenching parameters for hot stamping boron steel B1500HS based on response surface methodology[J]. Chinese Journal of Mechanical Engineering, 2011, 47(8): 77-82.

[12] Holman J P. Heat Transfer[M]. 10th Edition. New York: McGraw-Hill, 2010: 57-59.

[13] 朱德才,张立文,裴继斌,等. 固态塑性成形过程中界面接触换热的实验研究[J]. 塑性工程学报. 2008, 15(1): 92-96. Zhu De-cai, Zhang Li-wen, Pei Ji-bin, et al. Experiment research on the thermal contact conductance during the solid plastic forming[J]. Journal of Plasticity Engineering, 2008, 15(1): 92-96.

[1] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[2] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[3] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[4] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[5] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[6] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[7] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[8] 胡侃, 于野, 盈亮, 胡平, 侯文彬. 基于校车侧翻安全性的热冲压立柱结构优化设计[J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[9] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[10] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[11] 贺斌, 李显达, 盈亮, 胡平, 张向奎. 热冲压模具随形冷却水道优化设计[J]. 吉林大学学报(工学版), 2016, 46(6): 1974-1980.
[12] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[13] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[14] 谷诤巍, 吕萌萌, 赵立辉, 徐虹, 李欣, 陆冠含. 超高强钢热成形淬火阶段的工艺参数优化[J]. 吉林大学学报(工学版), 2016, 46(3): 853-858.
[15] 胡平, 张金女, 申国哲, 林发财, 刘立忠. 应力状态对模具分区冷却热成形S-rail硬度分布的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 500-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!