吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (06): 1574-1580.doi: 10.7964/jdxbgxb201306023

• 论文 • 上一篇    下一篇

基于输入观测器的分缸空燃比估计

王萍1, 江和耀2, 范亚南1, 陈虹1   

  1. 1. 吉林大学 通信工程学院, 长春 130022;
    2. 中国船舶重工集团公司 第七一三研究所, 郑州 450015
  • 收稿日期:2012-10-19 出版日期:2013-11-01 发布日期:2013-11-01
  • 通讯作者: 陈虹(1963-),女,教授,博士生导师.研究方向:预测控制,鲁棒控制及非线性控制的理论与应用.E-mail:chenh@jlu.edu.cn E-mail:chenh@jlu.edu.cn
  • 作者简介:王萍(1982-),女,讲师,博士.研究方向:预测控制,发动机控制.E-mail:wangping12@jlu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(61034001);教育部"长江学者和创新团队发展计划"创新团队项目(ITR1017).

Individual cylinder air-fuel ratio estimation based on input observer

WANG Ping1, JIANG He-yao2, FAN Ya-nan1, CHEN Hong1   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;
    2. The 713th Research Institute of China Shipbuilding Industry Corporation, Zhengzhou 450015, China
  • Received:2012-10-19 Online:2013-11-01 Published:2013-11-01

摘要:

针对进气道喷射发动机, 为了实现更加精确的空燃比(Air-fuel ratio, AFR)控制, 提出了基于输入观测器的分缸空燃比估计方法。首先建立发动机的完整油路模型, 主要包括燃油传输模型、气体(废气)混合过程模型、废气传输模型和氧传感器模型, 并基于发动机仿真软件enDYNA对其进行校验。然后设计了输入观测器来估计各缸内的空燃比, 并利用区域极点配置方法确定观测器的增益。最后通过离线仿真和发动机控制试验台架上的实时仿真验证了观测器的合理性和有效性。

关键词: 控制理论, 分缸空燃比, 油路模型, 输入观测器, 区域极点配置

Abstract:

Based on the input observer, an estimator of individual cylinder Air-Fuel Ratio (AFR) in a SI engine is proposed. The fuel path model, which is constituted by fuel wall-wetting model, exhaust gas mix model, exhaust gas transfer model and universal exhaust gas oxygen (UEGO) sensor model, is established. Then, under the same working condition and with the same input, the developed model is validated using the precise engine model of enDYNA. Furthermore, an input observer based on regional pole placement is proposed to design an AFR estimator. Finally, the rationality and feasibility of the proposed observer and AFR estimator are validated by real-time and offline simulations on a simulation platform for automotive engine control.

Key words: control theory, individual cylinder air-fuel ratio, fuel path model, input-observer, regional pole placement

中图分类号: 

  • TP273

[1] Zhai Yu-jia, Yu Ding-li. Neural network model-based automotive engine air/fuel ratio control and robustness evaluation[J]. Engineering Applications of Artificial Intelligence, 2009, 22: 171-180.

[2] Kota S, Kenji S. Modeling of individual cylinder air-fuel ratio for IC engines with multi-cylinders[C]//Proceedings of the 30th Chinese Control Conference,Yantai,2011:6151-6156.

[3] Jiao X H, Shen T L. Lyapunov-design of adaptive air-fuel ratio control for gasoline engines based on mean value model[C]//Proceedings of the 30th Chinese Control Conference, Yantai,2011:6146-6150.

[4] Schick W, Onder C, Guzzella L. Individual cylinder air fuel ratio control using fourier analysis[J]. IEEE Transaction on Control Systems Technology, 2011, 19(5): 1204-1213.

[5] Krenus R G, Costa H L. Individual cylinder fuel control application with a switching oxygen sensor[C]//SAE paper, 2010-36-0028.

[6] Wu J Z, Wasacz B. Estimation of individual cylinder fuel air ratios from a switching or wide range oxygen sensor for engine control and on-board diagnosis[J]. SAE International Journal of Engines, 2011, 4(1):861-873.

[7] Cavina N, Corti E, Moro D. Closed-loop individual cylinder air-fuel ratio control via UEGO signal spectral analysis[J]. Control Engineering Practice,2010,18(11): 1295-1306.

[8] Chen Jia-zhen, Huang Yun-zhi, Zhang Yuan-yuan, et al. Development of a UEGO sensor controller based on dSPACE[C]//2010 IEEE International Conference on Vehicular Electronics and Safety, Qingdao,2010:102-105.

[9] Shuntaro O, Naoto K, Junichi K, et al. Development of a new model based air-fuel ratio control system[J]. SAE Int J Engines, 2009, 2(1): 335-343.

[10] 江和耀. 基于输入观测器的分缸空燃比估计[D]. 长春:吉林大学通信工程学院, 2011. Jiang He-yao. Individual cylinder air-fuel ratio estimation based on input observer[D]. Changchun: College of Communication Engineering, Jilin University, 2011.

[11] 孙明轩,黄宝键. 迭代学习控制[M]. 北京:国防工业出版社, 1999.

[12] Xie Zhen-dong. Learning algorithm and convergence of tracking control[J]. Systems Engineering and Electronics, 1998, 20(10): 4-8.

[13] He B, Shen T L, Junichi K. Input observer-based individual cylinder air-fuel ratio control: modelling, design and validation[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 1057-1065.

[14] Chilali M, Gahinet P. H design with pole placement constrains: an LMI approach[J]. IEEE Transactions on Automatic Control, 1996, 41(3): 358-367.

[1] 王春阳, 辛瑞昊, 史红伟. 针对大滞后系统的滞后时间削弱自抗扰控制方法[J]. 吉林大学学报(工学版), 2017, 47(4): 1231-1237.
[2] 邓丽飞, 石要武, 朱兰香, 于丁力. SI发动机闭环系统故障检测[J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[3] 王春阳, 蔡年春, 李明秋, 刘雪莲. 基于向量的鲁棒分数阶比例微分控制器参数求解算法[J]. 吉林大学学报(工学版), 2015, 45(6): 1933-1940.
[4] 丛岩峰, 安向京, 陈虹, 喻再涛. 基于滚动优化原理的类车机器人路径跟踪控制[J]. 吉林大学学报(工学版), 2012, 42(01): 182-187.
[5] 贾秋菊, 陈增强. Hindmarsh-Rose神经元全局指数同步[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 235-239.
[6] 黄国勇. 基于神经网络干扰观测器的Terminal滑模控制[J]. 吉林大学学报(工学版), 2011, 41(6): 1726-1730.
[7] 王萍,陈虹,卢晓晖. 基于预测控制的时滞网络主动队列管理[J]. 吉林大学学报(工学版), 2011, 41(4): 1089-1095.
[8] 袁立鹏,崔淑梅,卢红影,靳蒙. 基于定理反馈理论迭代学习的液压角振动台控制策略[J]. 吉林大学学报(工学版), 2011, 41(03): 676-682.
[9] 葛宏伟,李小琳,梁艳春3,何湘东4 . 基于免疫粒子群优化的一种动态递归神经网络辨识与控制非线性系统
[J]. 吉林大学学报(工学版), 2008, 38(04): 858-864.
[10] 葛宏伟, 梁艳春. 进化Elman神经网络模型与非线性系统辨识[J]. 吉林大学学报(工学版), 2005, 35(05): 511-0519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!