吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (06): 1658-1665.doi: 10.7964/jdxbgxb201306036

• 论文 • 上一篇    下一篇

基于单目标拟合度的高维多目标可视化

毕晓君, 李博   

  1. 哈尔滨工程大学 信息与通信工程学院, 哈尔滨 150001
  • 收稿日期:2012-07-22 出版日期:2013-11-01 发布日期:2013-11-01
  • 通讯作者: 李博(1986-),男,博士研究生.研究方向:智能优化,高维多目标可视化.E-mail:libo_219vip@163.com E-mail:libo_219vip@163.com
  • 作者简介:毕晓君(1964-),女,教授,博士生导师.研究方向:信息智能处理技术,智能优化算法,数字图像处理.E-mail:bixiaojun@hrbeu.edu.cn
  • 基金资助:

    国家自然科学基金项目(61175126);中央高校基本科研业务费专项基金项目(HEUCFZ1209);高等学校博士学科点专项科研基金项目(20112304110009).

High dimension multi-objective visualization based on single objective fitting

BI Xiao-jun, LI Bo   

  1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2012-07-22 Online:2013-11-01 Published:2013-11-01

摘要:

针对现有可视化技术不能有效显示高维多目标优化问题这一难题,提出了一种以单目标拟合为绘图基准的子图表可视化技术。该方法以与目标数相同的子图表形式显示Pareto标准解集,并在子图表中通过拟合位置绘制Pareto近似集。其图形有效地显示了Pareto近似集的收敛性和分布性,同时对单个解各维目标上性能的相对优劣性及不同解在同一目标上性能的对比情况都达到了有效的可视化显示。基于此思想设计了可视化模型并通过试验加以分析,达到了方便决策者对多目标优化问题进行分析和决策的目的。

关键词: 计算机应用, 高维多目标可视化, 子图表可视化技术, 单目标拟合, Pareto前沿

Abstract:

Current visualization techniques failed to effectively display the high dimension multi-objective optimization problems. To overcome this disadvantage, a new sub-diagram visualization technology based on single objective fitting is proposed. The new visualization technology displays the Pareto solution set in sub-diagram form whose number is the same as objectives. Additionally, the Pareto approximate set is drawn by the fitting location in the sub-diagram. The proposed method displays effectively the convergence and distribution of the Pareto approximate set;meanwhile, the relative merits of the performance on a single solution in each dimension objective and the comparison of the performance of different solutions in the same objective are displayed effectively. Numerical experiments show that the new visualization technique plays a key role in helping decision-makers carry on analysis and decision for multi-objective optimization problems.

Key words: computer application, visualization technology of high dimension multi-objective, sub-diagram visualization technology, single objective fitting, the Pareto front

中图分类号: 

  • TP391

[1] Ortiz M C,Sarabia L A. Improving the visualization of the Pareto-optimal front for the multi-response optimization of chromatographic determinations[J]. Analytica Chimica Acta, 2011,687(2):129-136.

[2] Claessen J H T,Van W,Jarke J. Flexible linked axes for multivariate data visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2011,17(12):2310-2316.

[3] Stump G,Lego S,Yukish M. Visual steering commands for trade space exploration: User-guided sampling with example[J]. Journal of Computing and Information Science in Engineering, 2009,9(4):1-10.

[4] Zou Xiu-fen,Chen Yu,Liu Min-zhong. A new evolutionary algorithm for solving many-objective optimization problems[J].IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,2008,38(5):1402-1412.

[5] Efremov R,Insua D R,Lotov A. A framework for participatory decision support using Pareto frontier visualization, goal identification and arbitration[J]. European Journal of Operational Research, 2009,199(2):459-467.

[6] Agrawal G, Bloebaum C L,Lewis K. Intuitive design selection using visualized n-dimensional pareto frontier[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference,Austin, T X, USA,2005: 1813-1826.

[7] Taghavi T,Pimentel A D,Sabeghi M. VMODEX: A novel visualization tool for rapid analysis of heuristic-based multi-objective design space exploration of heterogeneous MPSoC architectures[J]. Simulation Modelling Practice and Theory,2012,22(5):166-196.

[8] Po-Wen C,Christina L B. Hyper-radial visualization (HRV) method with range-based preferences for multi-objective decision making[J]. Struct Multidisc Optim,2010 40(1):97-115.

[9] Bernataviiené J,Dzemyda Gintautas,Kurasova O. Optimal decisions in combining the SOM with nonlinear projection methods[J]. European Journal of Operational Research, 2006,173(3):729-745.

[10] Masafumi Y,Tomohiro Y,Takeshi F. Study on effect of MOGA with interactive island model using visualization[C]//2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona,Spain,2010:1-6.

[11] Ivosev G,Burton L,Bonner R. Dimensionality reduction and visualization in principal component analysis[J]. Analytical Chemistry, 2008, 80 (13):4933-4944.

[12] Deb K, Thiele L, Laumanns M. Scalable multi-objective optimization test problems[C]//Proceedings of the 2002 Congress on Evolutionary Computation,Honolulu,H I,2002: 825-830.

[13] Problems included in jMetal[DB/OL].[201-04-27].http:[C]//jmetal.sourceforge.net/problems.html.

[14] Pham M T, Zhang D, Koh, C S. Multi-guider and cross-searching approach in multi-objective particle swarm optimization for electromagnetic problems[J]. IEEE Transactions on Magnetics, 2012,48(2):539-542.

[15] Zitzler E, Thiele L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computations, 1999, 6(2):182-197.

[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!