吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 427-432.doi: 10.13229/j.cnki.jdxbgxb201402024

• 论文 • 上一篇    下一篇

基于引力场算法的基因调控网络构建

郑明, 刘桂霞, 周柚, 周春光   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2013-02-16 出版日期:2014-02-01 发布日期:2014-02-01
  • 通讯作者: 周柚(1979- ),男,副教授,博士.研究方向:生物信息学.E-mail:zyou@jlu.edu.cn E-mail:zyou@jlu.edu.cn
  • 作者简介:郑明(1983- ),男,博士研究生.研究方向:计算机应用技术和生物信息学. E-mail:zhengming07@mails.jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(60973092,60903097,61175023);吉林大学"985工程"项目;吉林大学研究生创新项目(20121109).

Reconstruction of gene regulatory network based on gravitation field algorithm

ZHENG Ming, LIU Gui-xia, ZHOU You, ZHOU Chun-guang   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2013-02-16 Online:2014-02-01 Published:2014-02-01

摘要:

为了解决传统基因调控网络构建算法准确度不高且效率低下的问题,使用一种基于微分方程的新型网络构建算法。算法分为奇异值分解和引力场算法两部分,奇异值分解策略用来缩小解空间范围,提高运行效率。引力场算法是本文核心,共分初始化、解空间分解、移动算子和吸收算子4步骤。分解策略采用随机分组法,移动算子采用元素逐个移动法,并可根据收敛效果重新移动。最后,将本文算法与另两种启发式搜索算法下的网络构建进行比较,构建模拟和真实的基因调控网络。实验结果显示:本文算法具有更高的执行效率。

关键词: 人工智能, 引力场算法, 基因调控网络, 优化算法, 奇异值分解

Abstract:

In order to resolve the low accuracy and inefficiency of reconstruction of Gene Regulatory Networks (GRNs) in system biology, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods are employed for inferring GRNs. One is Singular Value Decomposition (SVD) method and the other one is Gravitation Field Algorithm (GFA). The SVD method is used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. The GFA is the kernel part of the proposed algorithm. The GFA is divided into four parts: initialization, division of solution space, movement operator and absorption. Random group method is used in division of solution space. Every element movement method is used in movement operator. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in network database. Both genetic algorithm and simulated annealing are also used to evaluate GFA. The cross-validation results confirm the effectiveness of the proposed algorithm, which outperforms significantly other existing algorithms.

Key words: artificial intelligence, gravitation field algorithm, gene regulatory networks, optimal algorithm, singular value decomposition

中图分类号: 

  • TP18

[1] 刘元宁, 沈廷杰, 张浩, 等. microRNA靶基因特征提取新方法[J]. 吉林大学学报:工学版, 2012, 42(2): 418-422. Liu Yuan-ning, Shen Ting-jie, Zhang Hao, et al. New feature extraction methods of microRNA target genes[J]. Journal of Jinlin University (Engineering and Technology Edition), 2012, 42(2): 418-422.

[2] Lee W P, Hsiao Y T. Inferring gene regulatory networks using a hybrid GA-PSO approach with numerical constraints and network decomposition[J]. Inform Sciences, 2012, 188: 80-99.

[3] Wuensche A. Complex and chaotic dynamics, basins of attraction, and memory in discrete networks[J]. Acta Phys Pol B Pr S, 2010, 3(2): 463-478.

[4] Ooi B N S, Phan T T. Insights gained from the reverse engineering of gene networks in keloid fibroblasts[J]. Theor Biol Med Model, 2011, 8:13.

[5] Jalali-Heravi M, Mani-Varnosfaderani A. Navigating drug-like chemical space of anticancer molecules using genetic algorithms and counterpropagation artificial neural networks[J]. Mol Inform, 2012, 31(1): 63-74.

[6] Li Z, Li P, Krishnan A, et al. Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis[J]. Bioinformatics, 2011, 27(19): 2686-2691.

[7] Barrett T, Edgar R. Reannotation of array probes at NCBI's GEO database[J]. Nat Methods, 2008, 5(2): 117.

[8] Ten Berge J M F. Projection matrices, generalized inverse matrices, and singular value decomposition[J]. Psychometrika, 2012, 77(3): 613-614.

[9] Zio E, Golea L R, Rocco C M. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms[J]. Reliab Eng Syst Safe, 2012, 99: 172-177.

[10] Bank M, Ghomi S M T F, Jolai F, et al. Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration[J]. Adv Eng Softw, 2012, 47(1): 1-6.

[11] Zheng M, Liu G X, Zhou C G, et al. Gravitation field algorithm and its application in gene cluster[J]. Algorithm Mol Biol, 2010, 5:32.

[12] Liang M L, Dai L F. The left and right inverse eigenvalue problems of generalized reflexive and anti-reflexive matrices[J]. J Comput Appl Math, 2010, 234(3): 743-749.

[13] Wu J Y, Shao X Y, Li J H, et al. Scale-free properties of information flux networks in genetic algorithms[J]. Physica A, 2012, 391(4): 1692-1701.

[14] Le D H, Kwon Y K. GPEC: A cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection[J]. Comput Biol Chem, 2012, 37: 17-23.

[15] Bowden J. The topology of symplectic circle bundles[J]. T Am Math Soc, 2009, 361(10): 5457-5468.

[16] Bansal M, Belcastro V, Ambesi-Impiombato A, et al. How to infer gene networks from expression profiles[J]. Mol Syst Biol, 2007, 3:78.

[1] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[2] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[3] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[4] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[5] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[6] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[7] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[8] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[9] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[10] 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
[11] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[12] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[13] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[14] 李娟, 孟可心, 李月, 刘慧力. 基于相似匹配维纳滤波的地震资料噪声压制[J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
[15] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!