吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 111-116.doi: 10.13229/j.cnki.jdxbgxb201401020

• 论文 • 上一篇    下一篇

基于改进模糊物元模型的设备重要度评价新方法

吕锋1,2, 杨印生1, 郭长青3   

  1. 1. 吉林大学 工程仿生教育部重点实验室, 长春 130022;
    2. 河南科技大学 机电工程学院, 洛阳 471023;
    3. 吉林大学 管理学院, 长春 130022
  • 收稿日期:2012-12-20 出版日期:2014-01-01 发布日期:2014-01-01
  • 通讯作者: 杨印生(1963-),男,教授,博士生导师.研究方向:农业系统工程.E-mail:yys@jlu.edu.cn E-mail:yys@jlu.edu.cn
  • 作者简介:吕锋(1980-),男,讲师,博士研究生.研究方向:农业系统工程.E-mail:lvfeng1980@126.com
  • 基金资助:

    国家自然科学基金项目(71071069);国防技术基础项目(Z132011A003);河南省科技攻关项目(102102210487).

New approach of criticality analysis of equipment based on improved fuzzy matter-element model

LYU Feng1,2, YANG Yin-sheng1, GUO Chang-qing3   

  1. 1. Key Laboratory of Bionic Engineering Ministry of Education, China, Jilin University, Changchun 130022, China;
    2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471023, China;
    3. School of Management, Jilin University, Changchun 130022, China
  • Received:2012-12-20 Online:2014-01-01 Published:2014-01-01

摘要:

针对设备重要度概念的模糊性和评价指标的多样性特点,以及均一评价方法对不同的评价对象采用相同的权重分配,不能体现评价最优性的不足,提出了一种基于欧氏贴近度的改进模糊物元模型的设备重要度评价新方法。该方法依据Pareto原则,综合向量余弦的灰关联和DEA确定指标权重,采用模糊物元模型计算各设备的重要度,对设备重要程度进行评价与排序,并以某农机企业生产线的7台设备进行实证研究。结果表明,该方法避免了由于主观判断而导致权重的不确定性,提高了方案之间的可区分性,比传统方法更具优势。

关键词: 工业工程学, 设备重要度, 模糊物元, 灰关联分析, DEA

Abstract:

The concept of equipment criticality has the characteristics of fuzziness and diversity of evaluation index. Uniform evaluation method uses the same weight assignment for different evaluation objects, which does not reflect the optimality of evaluation. To overcome this problem, a new method for equipment criticality evaluation is put forward based on fuzzy matter-element analysis, combing with the concept of Euclid approach degree. The method integrates grey relation analysis based on the cosine distance and data envelopment analysis in a unified way to determine the index weight according to Pareto rule. The fuzzy matter-element model is applied to compute the equipment criticality, thus the grade classification of equipment criticality is obtained. Then, as a case study, experiment on seven equipments in a production line of an agro-machinery enterprise is carried out. The results show that the method can avoid the uncertainty in estimating the weights subjectively, increase the basic discrimination in the evaluation, so it outperforms the available traditional methods.

Key words: industrial engineering, equipment criticality, fuzzy matter-element, grey relation analysis, DEA

中图分类号: 

  • N945.16

[1] Natália F Oshiyama, Rosana A Bassani, Itala M L, et al. Medical equipment classification: method and decision-making support based on paraconsistent annotated logic[J]. Quality and Reliability Engineering International, 2012, 50(4): 395-402.

[2] Guo Li-jie, Gao Jin-ji, Yang Jian-feng, et al. Criticality evaluation of petrochemical equipment based on fuzzy comprehensive evaluation and a BP neural network[J]. Journal of Loss Prevention in the Process Industries, 2009, 22 (4) 469-476.

[3] 杨印生, 孙雨虹, 舒坤良. 农机企业设备重要度可拓评价研究[J]. 农机化研究, 2008(5): 41-44. Yang Yin-sheng, Sun Yu-hong, Shu Kun-liang. Study on extension evaluation of equipment important level in agro-machinery enterprise[J]. Journal of Agricultural Mechanization Research, 2008(5): 41-44.

[4] Marcello Braglia, Marco Frosolini, Roberto Montanari. Fuzzy TOPSIS approach for failure mode, effects and criticality analysis[J]. Quality and Reliability Engineering International, 2003, 19(5): 425-443.

[5] 董玉亮, 顾煜炯, 杨昆. 基于蒙特卡洛模拟的发电厂设备重要度分析[J]. 中国电机工程学报, 2003, 23(8): 201-205. Dong Yu-liang, Gu Yu-jiong, Yang Kun. Criticality analysis on equipment in power plant based on Monte Carlo simulation[J]. Proceedings of the CSEE, 2003, 23(8): 201-205.

[6] 张艳丽, 赵建平. 设备重要度的模糊综合评判[J]. 南京化工大学学报, 1999, 21(6): 40-43. Zhang Yan-li, Zhao Jian-ping. Fuzzy synthetic evaluation of equipment importance[J]. Journal of Nanjing University of Chemical Technology, 1999, 21(6): 40-43.

[7] 郭应征, 冯世元. 设备重要度的Fuzzy聚类分析[J]. 东南大学学报, 1995, 25(3): 96-100. Guo Ying-zheng, Feng Shi-yuan. The fuzzy clustering analysis for chemical apparatus importance classification[J]. Journal of Southeast University, 1995, 25(3): 96-100.

[8] 李常有, 徐敏强. 基于改进的TOPSIS的设备重要度分析[J]. 振动与冲击, 2009, 28(6): 164-167. Li Chang-you, Xu Min-qiang. Criticality analysis of equipment based on the improved TOPSIS[J]. Journal of Vibration and Shock, 2009, 28(6): 164-167.

[9] Félix C Gómez de León Hijes, José Javier Ruiz Cartagena. Maintenance strategy based on a multicriterion classification of equipments[J]. Reliability Engineering and System Safety, 2006, 91(4): 444-451.

[10] 吕锋, 贾现召, 杨晓英, 等. 基于灰关联分析模糊物元模型的矿区污水处理方案优选研究[J].矿业安全与环保, 2008, 35(1): 58-60. Lyu Feng, Jia Xian-zhao, Yang Xiao-ying, et al. Study on fuzzy matter-element model based on grey relevancy analysis on evaluation of wastewater treatment in mining area[J]. Mining Safety & Environmental Protection, 2008, 35(1): 58-60.

[11] Zhang Jing, Wang Ke, Chen Xin-ming, et al. Combining a fuzzy matter-element model with a geographic information system in eco-environmental sensitivity and distribution of land use planning[J]. International Journal of Environmental Research and Public Health, 2011, 8(4): 1206-1221.

[12] Liu Dong-jun, Zou Zhi-hong. Water quality evaluation based on improved fuzzy matter-element method[J]. Journal of Environmental Sciences-CHINA, 2012, 24(7): 1210-1216.

[13] 李柏年. 多目标决策中客观性权重的一种确定方法[J]. 运筹与管理, 2002, 11(5): 36-39. Li Bai-nian. The method of determining the objective weight in mult-purpose decision[J]. Operations Research and Management Science, 2002, 11(5): 36-39.

[14] 王先甲, 张熠. 基于AHP和DEA的非均一化灰色关联方法[J]. 系统工程理论与实践, 2011, 31(7): 1222-1229. Wang Xian-jia, Zhang Yi. Non-uniform grey relational method based on AHP and DEA[J]. Systems Engineering-Theory & Practice, 2011, 31(7): 1222-1229.

[15] 李光金, 黄韬, 岳琳. 仅有产出的多目标DEA及其应用[J]. 四川大学学报:工程科学版, 2001, 33(1): 113-114. Li Guang-jin, Huang Tao, Yue Lin. Multi-objective DEA only for outputs & its application[J]. Journal of Sichuan University (Engineering Science Edition), 2001, 33 (1): 113-114.

[16] Vladimir D Noghin. An axiomatization of the generalized edge worth-Pareto principle in terms of choice functions[J]. Mathematical Social Sciences, 2006, 52(2): 210-216.

[17] 孙雨虹. 农机企业设备更新决策方法与实证研究[D]. 长春: 吉林大学生物与农业工程学院, 2008. Sun Yu-hong. Decision-making methodological and empirical study of equipment replacement in agro-machinery enterprise[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2008.

[1] 代劲,胡峰,刘歆. 基于数据分布的快速灰关联分析[J]. 吉林大学学报(工学版), 2015, 45(1): 283-290.
[2] 孙旭, 李翀, 杨印生, 杨军. 基于网络DEA方法的机械产品生产过程效率测度[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 484-488.
[3] 王旭,陈永刚,杨印生 . 含有区间数的DEA-DA模型及灵敏度[J]. 吉林大学学报(工学版), 2009, 39(03): 716-0720.
[4] 杨志军,陈宇东,陈塑寰,陈新 . 结构拓扑修改重分析算法在I-DEAS中的实现[J]. 吉林大学学报(工学版), 2009, 39(03): 708-0711.
[5] 杨印生, 谢鹏扬. DEA-DA模型的灵敏度分析[J]. 吉林大学学报(工学版), 2004, (2): 174-179.
[6] 卢艳秋, 金俊武. DEA方法在运输价格评价中的应用[J]. 吉林大学学报(工学版), 2003, (3): 24-28.
[7] 李春好, 蔡莉. 含有定性因素的相对效率分析改进模型及应用[J]. 吉林大学学报(工学版), 2002, (4): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!