吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 117-123.doi: 10.13229/j.cnki.jdxbgxb201401021

• 论文 • 上一篇    下一篇

运动对象间的方位关系推理方法

欧阳继红1,2, 李双1,2, 孙伟1,2, 富倩1,2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;
    2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2012-11-25 出版日期:2014-01-01 发布日期:2014-01-01
  • 作者简介:欧阳继红(1964-),女,教授,博士生导师.研究方向:知识工程与专家系统,空间推理和数据挖掘.E-mail:ouyj@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(61170092,61133011,61272208,61103091,61202308).

Reasoning method of orientation relation between moving objects

OUYANG Ji-hong1,2, LI Shuang1,2, SUN Wei1,2, FU Qian1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
  • Received:2012-11-25 Online:2014-01-01 Published:2014-01-01

摘要:

针对传统时空推理研究大多局限于静态空间对象以及Rupam方位关系模型ROR复合表和概念邻域图所存在的问题,提出了一种动态方位关系推理方法。首先对ROR关系模型中复合表及概念邻域图进行完善:提出了ROR关系静态推理算法,并给出了复合表;提出了一种ROR概念邻域关系自动生成算法并构建了概念邻域图;将ROR关系复合表和概念邻域图与Rupam方法进行比较,结果表明,本文方法不仅能给出Rupam所给的正确结果,还能修正Rupam方位关系模型不存在的复合结果,且复合结果和概念邻域图更完整。然后基于ROR关系复合表和概念邻域图给出了运动对象间方位关系推理方法DRA。最后通过智能家居中的应用实例,说明了DRA方法的有效性。

关键词: 人工智能, 方位关系复合表, 概念邻域图, 区间关系, 运动对象

Abstract:

To solve the problem of limitation of traditional spatio-temporal reasoning in static space, and the problems in Rupam's orientation relation composition table and conceptual neighborhood graphs, a dynamic reasoning method based on Rupam's orientation relations model was proposed. First, the ROR base relations'composition table and conceptual neighborhood graphs are improved; a static reasoning algorithm is proposed and a ROR based relations'composition table is created; an auto-generated algorithm to produce conceptual neighborhood graphs of orientation relations is put forward. A comparison of the composition table and conceptual neighborhood graphs with those of Rupam was conducted and results show that the composition table and conceptual neighborhood graphs are more complete than Rupam's. Then a dynamic reasoning method (DRA) is proposed. To demonstrate the effectiveness of DRA, an application of smart home was illustrated based on the composition table and neighborhood graphs.

Key words: artificient intelligence, orientation relations&rsquo, composition table, conceptual neighborhood graphs, interval relations, object in motion

中图分类号: 

  • TP18

[1] Christian Freksa. Temporal reasoning based on semi-intervals[J]. Artificial Intelligence, 1992, 54:199-227.

[2] Randell David A, Cui Zhan, Cohn Anthony G. A spatial logic based on regions and connection[C]//Conf on Knowledge Representation and Reasoning, 1992:165-176.

[3] Goyal R K. Similarity assessment for cardinal directions between extended spatial objects[D]. The University of Maine, 2000.

[4] De Weghe Nico Van, Cohn Anthony G, De Maeyer Philippe. A qualitative representation of trajectory pairs[C]//ECAI, 2004:1103-1104.

[5] Marco Ragni, Stefan Wlfl. Reasoning about topological and positional information in dynamic settings[C]//Proceedings of the Twenty-First International FLAIRS Conference, 2008: 606-611.

[6] Rupam Baruah, Shyamanta M Hazarika. Modeling motion event using QSR[C]//ECAI (Workshop), 2010:61-66.

[7] 欧阳继红, 欧阳丹彤, 刘大有.基于模糊集及RCC理论的区域移动模型[J].吉林大学学报:工学版, 2007, 37(3): 591-594. Ouyang Ji-hong, Ouyang Dan-tong, Liu Da-you. Region movement model based on fuzzy sets and RCC theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(3): 591-594.

[8] Balbiani P, Condotta J F, Del Cerro L F. A model for reasoning about bidimensional temporal relations[C]//Proc of the 6th International Conf on Principles of Knowledge Representation and Reasoning, 1998:124-130.

[9] Allen J. Maintaining knowledge about temporal intervals[J]. Communications of the ACM, 1983, 26(1): 832-843.

[10] Balbiani P, Condotta J F, Del Cerro L F. A new tractable subclass of the rectangle algebra[C]//In IJCAI-99, 1999:442-447.

[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!