吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 283-290.doi: 10.13229/j.cnki.jdxbgxb201501041

• 论文 • 上一篇    下一篇

基于数据分布的快速灰关联分析

代劲1,胡峰2,刘歆1   

  1. 1.重庆邮电大学 软件学院,重庆 400065;
    2.重庆邮电大学 计算机学院,重庆 400065
  • 收稿日期:2013-12-20 出版日期:2015-02-01 发布日期:2015-02-01
  • 作者简介:代劲(1978),男,副教授,博士.研究方向:智能信息处理,灰理论.E-mail:daijin@cqupt.edu.cn
  • 基金资助:
    国家自然科学基金项目(61309014);重庆市基础与前沿研究计划项目(cstc2013jcyjA40009, cstc2013jcyjA40063);重庆市教委科学技术研究项目(KJ1400412).

Novel rapid grey incidence analysis method based on data distribution

DAI Jin1,HU Feng2,LIU Xin1   

  1. 1.College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
    2.College of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2013-12-20 Online:2015-02-01 Published:2015-02-01

摘要: 从灰关联分析中最核心的灰关联度构造及相应的挖掘算法出发,结合正态分布的普适性,提出了一种体现数据分布特点的正态灰数,并给出了相应的灰度及灰关联度计算方法。在此基础上,构建了一种多粒度无监督的快速灰聚类方法,无需先验知识即可完成自动聚类。通过实验验证了本文方法的有效性,为大数据下灰关联分析的进一步发展提供了新思路。

关键词: 计算机应用, 灰理论, 正态灰数, 灰关联度, 灰关联分析

Abstract: The classic grey theory does not adequately take into account the distribution of data set, and lacks effective methods to analyze and mine large sample in multi-granularity. Considering the universality of normal distribution, a normality grey number is proposed. Moreover, the corresponding definition and calculation method of the incidence degree between the normality grey numbers are constructed. On this basis, the grey incidence analysis method in multi-granularity is put forward to realize the automatic clustering in the specified granularity without any experience knowledge. Experiments fully demonstrate that the proposed method is effective in knowledge acquisition for large data.

Key words: computer application, grey theory, normal grey number, degree of grey incidence, grey incidence analysis

中图分类号: 

  • TP391
[1] 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社,2002: 1-46.
[2] Liu S F, Hu M L, Yang Y J. Progress of grey system models[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(2): 103-111.
[3] Wei G W. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information[J]. Expert Systems with Applications, 2011, 38(5): 4824-4828.
[4] Hamzaebi C, Pekkaya M. Determining of stock investments with grey relational analysis [J]. Expert Systems with Applications, 2011, 38(8): 9186-9195.
[5] Wei G W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making[J]. Expert Systems with Applications, 2011, 38(9): 11671-11677.
[6] 吴利丰, 刘思峰. 基于灰色凸关联度的面板数据聚类方法及应用[J]. 控制与决策, 2013, 28(7): 1033-1036.
Wu Li-feng, Liu Si-feng. Panel data clustering method based on grey convex relation and its application[J]. Control and Decision, 2013, 28(7): 1033-1036.
[7] 李鹏, 刘思峰. 基于灰色关联分析和 DS 证据理论的区间直觉模糊决策方法[J]. 自动化学报, 2011, 37(8): 993-998.
Li Peng, Liu Si-feng. Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and D-S theory of evidence[J]. Acta Automatica Sinica, 2011, 37(8): 993-998.
[8] 李鹏,刘思峰,方志耕. 基于灰色关联分析和 MYCIN 不确定因子的区间直觉模糊决策方法[J]. 控制与决策, 2012, 27(7): 1009-1014.
Li Peng,Liu Si-feng,Fang Zhi-geng.Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and MYCIN certainty factor[J].Control and Decision,2012,27(7):1009-1014.
[9] 菅利荣, 刘思峰. 面向集合论的灰度定义及灰色粗糙集模型建立[J]. 控制与决策, 2013, 28(5): 721-725.
Jian Li-rong, Liu Si-feng. Definition of grey degree in set theory and construction of grey rough set models[J]. Control and Decision, 2013, 28(5): 721-725.
[10] 王翯华, 朱建军, 方志耕. 基于灰色关联度的多阶段语言评价信息集结方法[J]. 控制与决策, 2013, 28(1): 109-114.
Wang He-hua, Zhu Jian-jun, Fang Zhi-geng. Aggregation of multi-stage linguistic evaluation information based on grey incidence degree[J]. Control and Decision, 2013, 28(1): 109-114.
[11] 刘思峰,党耀国,方志耕,等. 灰色系统理论及其应用[M].5版.北京:科学出版社, 2010.
[12] 张岐山, 秦洪. 灰数灰度的一个新定义[J]. 大庆石油学院学报, 1996, 20(1): 89-92.
Zhang Qi-shan, Qin Hong. New definition of grey number’s grade[J]. Journal of Northeast Petroleum University, 1996, 20(1): 89-92.
[13] Thadewald T, Büning H. Jarque–Bera test and its competitors for testing normality–a power comparison[J]. Journal of Applied Statistics, 2007, 34(1): 87-105.
[14] Lilliefors H W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J]. Journal of the American Statistical Association, 1967, 62(318): 399-402.
[15] Box G E R, Cox D R. An analysis of transformations[J]. Journal of the Royal statistical Society: Series B, 1964, 26(2):221-252.
[16] Farnum Nicholas R. Using Johnson curves to describe non-normal process data[J]. Quality Engineering, 1996, 9(2): 329-336.
[17] Bandalos. Reliability generalization of working alliance inventory scale scores[J]. Educational and Psychological Measurement, 2002,62(4): 659-673.
[18] Efron B, Tibshirani R. An Introduction to the Bootstrap[M]. New York: CRC Press, 1993.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!