吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 149-157.doi: 10.13229/j.cnki.jdxbgxb201401026

• 论文 • 上一篇    下一篇

基于马尔可夫相遇时间间隔预测的拥塞控制策略

杨永健, 王恩, 杜占玮   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2012-11-28 出版日期:2014-01-01 发布日期:2014-01-01
  • 作者简介:杨永健(1960-),男,教授,博士生导师.研究方向:无线通信与网络智能.E-mail:yyj@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(61272412);吉林省科技发展计划项目(20120303 ).

Congestion control strategy based on Markov meeting time span prediction model

YANG Yong-jian, WANG En, DU Zhan-wei   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2012-11-28 Online:2014-01-01 Published:2014-01-01

摘要:

提出的基于马尔可夫相遇时间间隔预测的拥塞控制策略(Congestion control strategy based on Markov meeting time span prediction model,CCSMP,主要是通过规定节点缓存的排队方式和丢弃机制,将预测得到的较早与目的节点相遇的报文排于队首,尽可能丢弃效用值较低的报文,进而解决由于节点缓存有限而带来的拥塞问题。通过在ONE环境下进行仿真,与Drop-Front(DF)和Drop-Oldest(DO)两种拥塞控制策略对比表明:文中提出的拥塞控制策略提高了报文投递率,减小了平均网络时延,并且在一定程度上减少了网络负载比率和丢包率。

关键词: 计算机应用, 拥塞, 马尔可夫相遇时间间隔, 排队方式, 丢弃机制

Abstract:

In order to solve the problem of the low delivery ratio caused by the limited resources in Delay-Tolerant Networking (DTN), the routing mechanism based on multiple copies is usually used to improve the delivery ratio. However, it may lead to the problem of the overload of node buffer caused by the excessive numbers of copies, then network congestion happens. This paper proposes the congestion control strategy based on Markov meeting time span prediction model CCSMP. It mainly specifies the line method and discarding mechanism of nodes buffer. The predicted messages meeting earlier with destination node are lined in the first, and the messages with lower utility values are discarded as far as possible. Then the congestion problem caused by the limited node buffer is solved. Simulation in ONE environment is carried out to compare the proposed strategy with the two congestion control strategies, Drop-Front(DF) and Drop-Oldest(DO). Simulation results show that the congestion control strategy proposed by this paper improves the message delivery ratio, reduces the average network delay, and to a certain extend reduces the overhead ratio and packet dropped rate.

Key words: computer application, congestion, Markov meeting time span, line method, discarding mechanism

中图分类号: 

  • TP393

[1] Burleigh S, Hooke A, Torgerson L, et al. Delay tolerant networking: An approach to interplanetary internet[J]. IEEE Communications Magazine, 2003, 41(6):128-136.

[2] Akyildiz I, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks[J].IEEE Communications Magazine, 2002, 40(8):102-114.

[3] Fall K. A delay-tolerant network architecture for challenged Internets[C]//Proc Conf Appl Technol Architecture Protocols For Computer Commun, Karlsruhe, Germany, 2003:27-34.

[4] Cao Jian-nong, Zhang Yang, Xie Li. Consistency of cooperative caching in mobile peer-to-peer systems over MANET[J].International Journal of Parallel, Emergent and Distributed Systems, 2006, 21(3):151-168.

[5] Fall K, Hong W, Madden S. Custody transfer for reliable delivery in delay tolerant networks[EB/OL].[2010-03-28]. http://www.dtnrg.org/papers/custody-xfer-tr.pdf.

[6] 张文柱, 孙勇发, 王炫. 基于马尔科夫决策的容迟网络路由算法[J]. 西安电子科技大学学报, 2011, 38(2):18-22. Zhang Wen-zhu, Sun Yong-fa, Wang Xuan. Study of the DTN routing algorithm based on the Markov decision[J]. Journal of Xidian University, 2011, 38(2):18-22.

[7] 邓甦, 李晓毅. 马尔科夫链在呼吸道传染病预测中的应用[J]. 中国卫生统计, 2011(6): 615-616. Deng Su, Li Xiao-yi. Markov chain in the prediction of respiratory infectious diseases[J]. Chinese Journal of Health Statistics, 2011 (6):615-616.

[8] Krifa A, Baraka C, Spyropoulos T. Optimal buffer management policies for delay tolerant networks[C]//The 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, IEEE, 2008: 260-268.

[9] 熊永平, 孙利民, 牛建伟. 机会网络[J]. 软件学报, 2009, 20(1):127-134. Xiong Yong-ping, Sun Li-min, Niu Jian-wei. Opportunistic networks[J]. Journal of Software, 2009, 20(1):127-134.

[10] Ramanathan R, Hansen R, Basu P, et al. Prioritized epidemic routing for opportunistic networks[C]//International Conference on Mobile Systems, Applications and Services, Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking, 2007, 11(11): 62-66.

[11] Pawelczak P, Venkatesha Prasad R, Xia L, et al. Cognitive radio emergency networks -requirements and design[C]//New Frontiers in Dynamic Spectrum Access Networks, IEEE, 2005: 601-606.

[12] Lindgren A, Phanse K S. Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks[C]//Communication System Software and Middleware, 2006: 1-10.

[13] 王贵竹, 徐正欢, 李晓峰. DTN中依据报文质量的拥塞控制策略[J]. 计算机工程与应用, 2012, 48(9):74-77. Wang Gui-zhu, Xu Zheng-huan, Li Xiao-feng. Congestion control strategy based on quality of message in DTN[J]. Computer Engineering and Applications, 2012, 48(9):74-77.

[14] John B, Brian G, David J. Maxprop:Routing for vehicle-based disruption-tolerant networks[C]//INFOCOM, 2006:1-11.

[15] 刘期烈, 潘英俊. 延迟容忍网络中基于复制率的拥塞控制算法[J]. 北京邮电大学学报, 2010, 33(4): 88-92. Liu Qi-lie, Pan Ying-jun. Congestion control strategy based on copy rate in DTN[J]. Journal of Beijing University of Post and Telecommunications, 2010, 33(4): 88-92.

[16] 陶勇, 龚正虎. DTN 拥塞控制研究进展[J]. 计算机应用研究, 2010, 27(10):3605-3611. Tao Yong, Gong Zheng-hu. Survey on congestion control for DTN[J].Application Research of Computers, 2010, 27(10): 3605-3611.

[17] 刘席开, 刘桂开. 机会网络拥塞控制的研究[J]. 中南林业科技大学学报, 2012, 32(8):159-165. Liu Xi-kai, Liu Gui-kai. Study on congestion control for opportunistic network[J]. Journal of Central South University of Forestry & Technology, 2012, 32(8):159-165.

[18] Broch J, Maltz D A, Johnson D B, et al. A performance comparison of multi-hop wireless ad hoc network routing protocols[C]//Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM, 1998: 85-97.

[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!