吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 259-263.doi: 10.13229/j.cnki.jdxbgxb201401042

• 论文 • 上一篇    下一篇

基于块稀疏信号的正则化自适应压缩感知算法

庄哲民, 吴力科, 李芬兰, 魏楚亮   

  1. 汕头大学 电子工程系, 广东 汕头 515063
  • 收稿日期:2012-10-28 出版日期:2014-01-01 发布日期:2014-01-01
  • 作者简介:庄哲民(1965-),男,教授,博士.研究方向:智能信号处理,无线传感网络.E-mail:zmzhuang@stu.edu.cn
  • 基金资助:

    国家自然科学基金项目(61070152);广东省科技计划项目(2007B010400073);汕头大学科研基金项目(NTF10012).

Regularized adaptive matching pursuit algorithm of compressive sensing based on block sparsity signal

ZHUANG Zhe-min, WU Li-ke, LI Fen-lan, WEI Chu-liang   

  1. Department of Electronics, Shantou University, Shantou 515063, China
  • Received:2012-10-28 Online:2014-01-01 Published:2014-01-01

摘要:

在研究已有的块稀疏信号贪婪算法的基础上,提出一种正则化的自适应恢复算法。该算法在块稀疏度未知的前提下,添加了正则化的思想进行块挑选,从而更正确地挑选出块信号的支撑块,实现信号的重建。该算法首先在确定块的稀疏度和选择步长后,利用相关最大化原则实现支撑块的初次挑选;然后,依据已挑选出的支撑块再进行正则化分组,实现二次挑选;最终通过循环迭代正确挑选出整个信号的支撑块。通过仿真实验证明,该算法不仅不需要信号的块稀疏度作为先验知识,且较现有的块信号贪婪算法的重构概率更高,也比现有的块稀疏自适应贪婪算法所需的迭代次数更少和迭代时间更短。

关键词: 通信技术, 稀疏信号, 自适应, 正则化, 贪婪算法

Abstract:

A regularized adaptive matching pursuit algorithm as proposed after research and summarize the existing greedy algorisms based on block-sparse signal. This algorithm mainly in the light of regularized method under a condition that a block-sparse degree is unknown, so that the signal support set can be determined more accurately by the algorithm, then we can reconstruct a signal precisely. First, the algorithm initializes a sparsity degree and step size of a block signal; by maximizing the correlation between residual and measurement matrix, it realizes the selection of subset of the signal support. Then the algorithm updates the selected subset in the second time. Finally, the exact support set is acquired through iteration. The experimental results prove that the proposed algorithm can get better reconstruction performance than other existing greedy algorithms based on block signal, and it has less iteration number and iteration time than the other adaptive algorithm based on block signal.

Key words: communication, block signal, adaptive, regularized, greedy algorithm

中图分类号: 

  • TN911.6

[1] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.

[2] Gao Qiang, Duan Chen-dong, Fang Xiang-bo, et al. A study on matching pursuit based on genetic algorithm[C]//Third International Conference on Measuring Technology and Mechatronics Automation, 2011:283-286.

[3] Tony Cai T, Wang Lei. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011, 57(7):4680-4688.

[4] Needell D, Vershynin R. Greedy signal recovery and uncertainty principles[C]//Proceedings of the Conference on Computational Imaging, San Jose, USA, SPIE, 2008: 1-12.

[5] Do T T, Lu G, Nam N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//The 42nd Asilomar Conference on Signals, Systems and Computers, 2008.

[6] Eldar Y C, Kuppinger P, Bolcskei H. Compressed sensing of block-sparse signal:uncertainly relations and efficient recovery[J]. IEEE Trans on Signal Processing, 2010, 58(6):3042-3054.

[7] Baraniuk R, Ceveher V, Duarte M, et al. Model-based compressive sensing[J].IEEE Trans on Information Theory, 2010, 56(4):1982-2001.

[8] 付宁, 乔立岩, 曹离然. 面向压缩感知的块稀疏度自适应迭代算法[J]. 电子学报, 2011, 39(3):75-79. Fu Ning, Qiao Li-yan, Cao Li-ran. Block sparsity adaptive iteration algorithm for compressed sensing[J]. Acta Electronica Sinica, 2011, 39(3):75-79.

[9] Eldar Y C. Block-sparse signal:uncertainty relations and efficient recovery[J]. IEEE Trans on Signal Processing, 2010, 58(6):3042-3054.

[10] Eldar Y C, Mishali M. Block sparsity and sampling over a union of subspaces[C]//The 16th International Conference on Digital Signal Processing, Santorini, Greece, 2009.

[11] Zhang Z, Rao B D. Recovery of block signals using the framework of block sparse Bayesian learning[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2012:3325-3348.

[12] Xu Tao, Wang Wen-wu. A block-baesd compressed sensing method for underdetermined blind speech separation incorporating binary mask[C]//IEEE International Conference on Acoustics speech and Signal Processing, 2010:2022-2025.

[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[3] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[4] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[5] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[6] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[7] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[8] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[9] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[10] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[11] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[12] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[13] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[14] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!