吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 807-811.doi: 10.13229/j.cnki.jdxbgxb201403036

• 论文 • 上一篇    下一篇

CPSO-LSSVM在自回归钟差预报中的应用

刘强1,孙际哲1,2,陈西宏1,刘继业1,张群3   

  1. 1.空军工程大学 防空反导学院,西安 710051;
    2.西北工业大学 航海学院,西安710072;
    3. 空军工程大学 信息与导航学院,西安710077
  • 收稿日期:2013-02-20 出版日期:2014-03-01 发布日期:2014-03-01
  • 作者简介:刘强(1985),男,博士研究生.研究方向:高精度时间同步技术.E-mail:dreamlq@163.com
  • 基金资助:
    国家自然科学基金项目(60971100).

Application analysis of CPSO-LSSVM algorithm in AR clock error prediction

LIU Qiang1,SUN Ji-zhe1,2,CHEN Xi-hong1,LIU Ji-ye1,ZHANG Qun3   

  1. 1.Air and Missile Defense College, Air Force Engineering University, Xi′an 710051, China;
    2.College of Marine Engineering, Northwestern Polytechnical University, Xi′an 710072, China;
    3.Information & Navigation College, Air Force Engineering University, Xi′an 710077,China
  • Received:2013-02-20 Online:2014-03-01 Published:2014-03-01

摘要: 建立了基于自回归算法的钟差预报模型,利用具有较强非线性运算能力和容错能力的最小二乘-支持向量机算法来求解自回归参数,同时利用具有快速寻优特点的粒子群算法来优化最小二乘-支持向量机参数。为了克服粒子群算法容易陷入局部极值而形成早熟的缺点,提出了分别在粒子初始化位置和陷入局部极值的位置上进行混沌处理,提高了粒子搜索的遍历性和寻优能力,从整体上优化了算法。最后通过星载钟差数据对该算法进行了验证,结果表明:本文算法能够实现亚纳秒量级的预报精度并提升卫星授时导航性能。

关键词: 计算机应用, 混沌粒子群, 最小二乘-支持向量机, 钟差预报

Abstract: A model of Auto Regressive (AR) algorithm is established to predict clock error. The model takes the advantage of strong abilities of non-linear operation and fault toleration of Least Square-Support Vector Machine (LS-SVM) to determine the parameters of AR. It also optimizes the LS-SVM parameters by Particle Swarm Optimization (PSO), which could search the best target fast. In order to overcome the shortcoming that PSO always plunges into local extremum and becomes premature, Chaos theory is introduced into positional initialization and local extremum condition, which improves particles' ergodicity and the ability of optimization, accordingly the algorithm as a whole is optimized. The algorithm is tested by satellite clock error data. The results show that the algorithm can achieve sub-nanosecond prediction precision, thus improving the satellites' time service and navigation.

Key words: computer application, chaos particle swarm optimization(CPSO), least square-support vector machine (LS-SVM), clock error prediction

中图分类号: 

  • TP301
[1] 王继刚,胡永辉,何在民,等. 基于修正线性组合模型的原子钟钟差预报[J].天文学报,2011,52(1) :54-61.
Wang Ji-gang, Hu Yong-hui, He Zai-min, et al. Modified linear combination model for atomic clock prediction[J]. Acta Astronomica Sinica, 2011, 52(1): 54-61.
[2] 王继刚,胡永辉,何在民,等.线性加权组合Kalman滤波在钟差预报中的应用[J].天文学报,2012,53(3):213-221.
Wang Ji-gang, Hu Yong-hui, He Zai-min, et al. Clock bias prediction based on linear weighted combination Kalman filter[J]. Acta Astronomica Sinica, 2012, 53(3): 213-221.
[3] 郭海荣,杨生,杨元喜,等. 基于卫星双向时间频率传递进行钟差预报的方法研究[J]. 武汉大学学报:信息科学版,2007,32(1):43-46.
Guo Hai-rong, Yang Sheng, Yang Yuan-xi, et al. Numerical prediction methods for clock difference based on two-way satellite time and frequency transfer data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 43-46.
[4] 郭承军,滕云龙.基于小波分析和神经网络的卫星钟差预报性能分析[J]. 天文学报,2010,51(4): 395-403.
Guo Cheng-jun, Teng Yun-long. Performance analysis of satellite clock bias based on wavelet analysis and neural network[J]. Acta Astronomica Sinica, 2010, 51(4):395-403.
[5] 王华秋,廖晓峰,曹长修,等. 基于鲁棒LS-SVM的ARMA时序模型研究[J].系统仿真学报,2007,19(8): 1780-1784.
Wang Hua-qiu, Lao Xiao-feng, Cao Chang-xiu, et al. Research of ARMA time series model based on robust LS-SVM[J]. Journal of System Simulation, 2007, 19(8): 1780-1784.
[6] 杜文莉,官振强,钱锋. 一种基于时序误差补偿的动态软测量建模方法[J]. 化工学报,2010,61(2): 439-443.
Du Wen-li, Guan Zhen-qiang, Qian Feng. Dynamic soft sensor modeling based on time series error compensation[J]. CIESC Journal, 2010, 61(2): 439-443.
[7] 邵信光,杨慧中,陈刚. 基于粒子群优化算法的支持向量机参数选择及其应用[J]. 控制理论与应用,2006,23(5):740-743.
Shao Xin-guang, Yang Hui-zhong,Chen Gang. Parameters selection and application of support vector machines based on particle swarm optimi-zation algorithm[J]. Control Theory & Applica-tions, 2006, 23(5):740-743.
[8] 张陆游,张永顺,杨云. 基于混沌自适应变异粒子群优化的解相干算法[J]. 电子与信息学报,2009,31(8):1825-1829.
Zhang Lu-you, Zhang Yong-shun, Yang Yun. A de-correlation algorithm based on chaos adaptive mutation PSO optimization[J]. Journal of Elec-tronics & Information Technology, 2009, 31(8): 1825-1829.
[9] Kennedy J, Eberhart R C. Particle swarm optimi-zation[C]∥IEEE International Conference on Neural Network, Piscataway N J, 1995:1942-1948.
[10] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans-actions on Evolutionary Computation, 2002, 6(1):58-73.
[11] 陈西宏,刘强,胡茂凯. OFDM中基于粒子群优化的限幅算法[J]. 空军工程大学学报:自然科学版,2010,11(2):52-56.
Chen Xi-hong, Liu Qiang, Hu Mao-kai. A clipping algorithm based on PSO in OFDM[J]. Journal of Air Force Engineering University(Natural Science Edition), 2010, 11(2): 52-56.
[12] 窦全胜,潘冠宇,刘岩,等. PSO的向量整体修订策略和局部跳出策略[J]. 吉林大学学报:工学版,2012,42(2):429-433.
Dou Quan-shen, Pan Guan-yu, Liu Yan, et al. Vector correction and jump out of local optimum strategy for PSO[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(2): 429-433.
[13] 胥小波,郑康锋,李丹,等. 新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30.
Xu Xiao-bo, Zheng Kang-feng, Li Dan, et al. New chaos-particle swarm optimization algorithm[J]. Journal on Communications, 2012, 33(1): 24-30.
[14] Fu Zhi-chao, Wei Cheng, Yang Yan-long. Force identification by using SVM and CPSO tech-nique[J]. Lecture Notes in Computer Science,2010(1): 140-148.
[15] 吕振肃,侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报,2004,32(3):416-420.
Lü Zhen-su, Hou Zhi-rong. Particle swarm opti-mization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3):416-420.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!