吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1140-1144.doi: 10.13229/j.cnki.jdxbgxb201404036

• • 上一篇    下一篇

基于视觉特征的不规则形状目标分割方法

李雄飞, 赵浩宇, 陈霄, 赵宏伟   

  1. 1.吉林大学 软件学院, 长春130012;
    2.吉林大学 计算机科学与技术学院, 长春130012;
    3. 吉林农业大学 信息技术学院, 长春130118
  • 收稿日期:2013-04-07 出版日期:2014-07-01 发布日期:2014-07-01
  • 通讯作者: 赵宏伟(1962-), 男, 教授, 博士生导师.研究方向:智能信息系统.E-mail:zhaohw@jlu.edu.cn
  • 作者简介:李雄飞(1963-), 男, 教授, 博士生导师.研究方向:数据智能处理.E-mail:lxf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61101155); 吉林省科技发展计划项目(20140101184JC)

Irregular shape object segmentation based on visual feature

LI Xiong-fei1, 2, ZHAO Hao-yu1, CHEN Xiao3, ZHAO Hong-wei1, 2   

  1. 1.College of Software, Jilin University, Changchun 130012, China;
    2.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    3.College of Information Science and Technology, Jilin Agricultural Universersity, Changchun 130118, China
  • Received:2013-04-07 Online:2014-07-01 Published:2014-07-01

摘要: 该方法利用视觉底层特征颜色、方向、强度和轮廓构建显著图, 通过最大熵估计方法获得显著特征分割蒙板;利用中层视觉特征对图像进行超分割, 其中在聚类时考虑特征向量的空间信息, 并依据显著性自动分配初始参数, 使分割后的超像素与目标轮廓更接近;最后将底层视觉特征和中层视觉特征融合, 通过底层特征分割蒙板判定图像的超像素归类, 将不规则目标从背景中分离。实验结果表明:本文分割方法受复杂背景和光照的影响较小, 分割目标轮廓准确, 实现了不规则显著目标与复杂背景的有效分离。

关键词: 计算机应用, 超像素, 图像分割, 视觉显著特征, 显著图

Abstract: A salient object segmentation method based on low-level visual feature and middle-level visual cues was proposed. First, the low-level visual feature of the original image was extract via color, intensity, orientation and local energy feature channels to build the saliency map. The salient feature mask was acquired via the maximum information entropy principle. Then In middle-level, the visual cues were applied for over-segmentation of an image into superpixels. In clustering, the spatial information of the feature vector was taken into consideration according to the salient intensity, and the initial parameters were automatically set. Thus, the superpixels after segmentation accurately approach the object contour. Finally, for segmenting the irregular object from background, the superpixels were classified using the salient feature mask, and the low-level and middle-level features were fused. The experiment results demonstrate that the proposed method is less sensitive to complex illumination and background, and can be used to segment contour accurately. Moreover, it can be applied to segment irregular objects from complex background.

Key words: computer application, superpixels, image segmentation, visual salient features, saliency map

中图分类号: 

  • TP391
[1] Chou Chien-Hsing, Lin Wen-Hsiung, Fu Chang. A binarization method with learning- build rules for document images produced by cameras[J] . Pattern Recognition, 2010, 43( 4) : 1518- 1530.
[2] 马儒宁, 涂小坡, 丁军娣, 等.视觉显著性凸显目标的评价[J].自动化学报, 2012, 28(5):876-879. Ma Ru-ning, Tu Xiao-bo, Ding Jun-di, et al.To evaluate salience map towards popping out visual objects[J].Acta Automatica Sinica, 2012, 28(5):876-879.
[3] Chou C H, Li W H, Chang F. A binarization method with learning-build rules for document images produced by cameras[J]. Pattern Recognition, 2010, 43(4):1518-1530.
[4] Pai Y T, Chang Y F, Ruan S J. Adaptive thresholding algorithm:Efficient computation technique based on intelligent block detection for degeaded document images[J]. Pattern Recognition, 2010, 43(9): 3177-3187.
[5] Yu Jin-gang, Tian Jin-wen. Saliency detection using midlevel visual cues[J]. Optics Letters, 2012, 27(23):4994-4996.
[6] 赵宏伟, 陈霄, 刘萍萍, 等.视觉显著目标的自适应分割[J].光学精密工程, 2013, 21(2): 531-538. Zhao Hong-wei, Chen Xiao, Liu Ping-ping, et al.Adaptive segmentation for visual salient object[J]. Optics and Precision Engineering, 2013, 21(2): 531-538.
[7] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state of the art superpixel method[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
[8] Rother C, Kolmogorov V, Blake A. GrabCut interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
[9] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-168.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!