吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 938-945.doi: 10.13229/j.cnki.jdxbgxb201503037

• • 上一篇    下一篇

流媒体系统中基于请求迁移的任务调度算法

李军1, 2, 倪宏1, 王玲芳1, 陈君1   

  1. 1.中国科学院声学研究所 国家网络新媒体工程技术研究中心,北京 100190;
    2.中国科学院大学,北京 100190
  • 收稿日期:2013-08-21 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 陈君(1977-),女,副研究员,博士.研究方向:宽带多媒体通信.E-mail:chenj@dsp.ac.cn E-mail:lij0526@gmail.com
  • 作者简介:李军(1986-),男,博士研究生.研究方向:网络新媒体技术.
  • 基金资助:
    “863”国家高技术研究发展计划项目(2012AA011703); 国家科技支撑计划项目(2012BAH02B01); 中科院重点部署项目(KGZD-EW-103-4, KGZD-EW-103-2)

Request migration based task scheduling algorithm in VoD system

LI Jun1, 2, NI Hong1, WANG Ling-fang1, CHEN Jun1   

  1. 1.National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190,China;
    2.University of Chinese Academy of Sciences, Beijing 100190,China
  • Received:2013-08-21 Online:2015-05-01 Published:2015-05-01

摘要: 提出了基于请求迁移的任务调度策略(Request migration based task scheduling, RMTS)算法,当有新请求到达系统时,运行RMTS算法的调度器根据当前负载状态和迁移路径长度决定是否对请求进行迁移,并选择最优迁移路径。当某个媒体服务器出现故障无法提供服务时,调度器将该服务器正在服务的请求迁移到其他存储有相应内容的媒体服务器以保障点播服务不间断。采用请求成功率和服务时延度量系统的性能,仿真结果表明:RMTS算法优于传统迁移算法和REM(Random early migration)算法,服务时延和请求成功率分别提高了14%和15%。

关键词: 信息处理技术, 任务调度, 请求迁移, 服务不间断, 请求成功率, 服务时延

Abstract: A Request Migration based Task Scheduling algorithm (RMTS) is proposed. When a new request is received, the scheduler running RMTS calculates a probability based on the current system load and request migration path length to determine whether migration is needed. If migration is needed, the optimal migration path is selected. With one video server failure, the scheduler transfers all the requests in service to another server to ensure service uninterrupted. The request success rate and service delay are used to measure the system performance. Experiment results demonstrate that the proposed RMTS performs better than traditional request migration algorithm that, with RMTS, the request success rate and service delay are improved by 14% and 15% respectively.

Key words: information processing, task scheduling, request migration, service uninterruptable, request success rate, service delay

中图分类号: 

  • TP301.6
[1] 吴伟. 流媒体服务器迁移技术研究[D].北京:中国科学技术大学信息科学技术学院, 2009.
Wu Wei. The study of the request migration for streaming server[D]. Beijing:School of Information Science and Technology,University of Science and Technology of China, 2009.
[2] Zhou Y, Fu T Z J, Chiu D M. On replication algorithm in P2P VoD[J]. Association for Computing Machinery,2013,21(1):233-243.
[3] Dhage S N, Meshram B B. Design and implementation of video servers for VoD system[J]. International Journal of Cloud Computing,2013,2(1):61-88.
[4] Wolf J L,Yu P S, Shachnai H. DASD Dancing: a disk load-balancing optimization scheme for on-demand video-on-demand computer systems[J]. Sigmetrics Performance Evaluation Review,1995,23(1):157-166.
[5] Dhage S, Meshram B B. Disk load balancing and video ranking algorithm for efficient access in video server[C]∥International Conference on Communication, Information & Computing Technology,Mumbai, India, 2012:1-6.
[6] Guo J, Taylor P, Zukerman M, et al. On the efficient use of video-on-demand storage facility[C]∥2003 International Conference on Multimedia and Expo, 2003:329-332.
[7] Zhao Y, Kuo C C J. Video server scheduling using random early request migration[J]. Multimedia Systems,2005,10(4): 302-316.
[8] Mundur P, Simon R, Sood A K. End-to-end analysis of distributed video-on-demand systems[J]. IEEE Transactions on Multimedia,2004,6(1):129-141.
[9] 杨戈,廖建新,朱晓民,等. 流媒体分发系统关键技术综述[J]. 电子学报,2009,37(1):137-145.
Yang Ge, Liao Jian-xin, Zhu Xiao-min, et al. Survey of key technologies of the distribution system for streaming media[J]. Acta Electronica Sinica,2009,37(1):137-145.
[10] Barnett S A, Anido G J. A cost comparison of distributed and centralized approaches to video-on-demand[J]. IEEE Journal on Selected Areas in Communications,1996,14(6):1173-1183.
[11] Kao Y C, Lee C N, Wu P J, et al. A network coding equivalent content distribution scheme for efficient peer-to-peer interactive VoD streaming[J]. IEEE Transactions on Parallel and Distributed Systems,2012,23(6):985-994.
[12] Chao Y, Hongxia W. Developed Dijkstra shortest path search algorithm and simulation[C]∥2010 International Conference on Computer Design and Applications (ICCDA),Qinhuangdao,China,2010:116-119.
[13] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematic,1959,1(1):269-271.
[14] Haight F A.Handbook of the Possion Distribution[M]. New York:Wiley,1967.
[15] Kali R. The city as a giant component: a random graph approach to Zipf's law[J]. Applied Economics Letters,2003,10(11):717-720.
[16] Kingsley Z G. Human Behavior and the Principle of Least Effort[M]. Boston:Addison-Wesley, 1949.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!