吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 265-270.doi: 10.13229/j.cnki.jdxbgxb201601040

• • 上一篇    下一篇

基于局部邻域约束的空间验证方法

赵宏伟1, 2, 李清亮1, 汤寰宇1, 臧雪柏1   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012;
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
  • 收稿日期:2015-03-06 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 臧雪柏(1963-),女,研究员,博士.研究方向:智能信息系统.E-mail:zangxb@jlu.edu.cn
  • 作者简介:赵宏伟(1962-),男,教授,博士生导师.研究方向:智能信息系统与嵌入式技术.E-mail:zhaohw@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61101155); 吉林省自然科学基金项目(201215045,20140101184JC)

Spatial verification method based on local regional constraint

ZHAO Hong-wei1, 2, LI Qing-liang1, TANG Huan-yu1, ZANG Xue-bai1   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012,China;
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2015-03-06 Online:2016-01-30 Published:2016-01-30

摘要: 提出了用基于局部邻域约束的空间验证方法去验证错误的匹配特征。首先,计算匹配特征对的局部邻域范围,根据局部邻域内相关匹配特征对的数量定义该匹配对的局部邻域约束值,并判断是否满足局部邻域的约束条件。若满足,则基于局部邻域内的所有相关匹配特征的排列顺序,验证其是否满足一致的几何变换关系。实验结果表明:SVLRC方法具有较低的时间复杂度,改善了最终检索结果的精确度。

关键词: 计算机应用, 图像检索, Bag of Words模型, 局部邻域, 空间约束, 后验证

Abstract: A Spatial Verification method based on Local Regional Constraints (SVLRC) is developed to remove false positive matches. First, the local region range of a center match pair is calculated. Then, the constraint value of the centre matches is defined according to the number of other matches in the local regions and whether the center match pairs satisfy the condition of local region constraint is judged. If the condition is met, whether all the matches in the local regions follow consistent geometric transformation is estimated based on geometric order. Extensive experiments demonstrate that the SVLRC can improve the retrieval accuracy significantly with low computation cost.

Key words: computer application, image retrieval, Bag of Words model, local regions, spatial constraint, post-processing

中图分类号: 

  • TP391.41
[1] Zheng L, Wang S, Zhou W, et al. Bayes merging of multiple vocabularies for scalable image retrieva[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014:1963-1970.
[2] 赵宏伟,李清亮,刘萍萍. 基于分级显著信息的空间编码方法[J]. 电子学报, 2014, 42(9): 1863-1867.
Zhao Hong-wei, Li Qing-liang, Liu Ping-ping.Spatial encoding based on hierarchical salient information[J]. Acta Electronica Sinica, 2014,42(9):1863-1867.
[3] Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos[C]∥Proceedings of 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 1470-1477.
[4] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395.
[5] Jegou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search[C]∥Proceedings of the 2008 10th IEEE European Conference on Computer Vision. Marseille, France: IEEE,2008:304-317.
[6] Tsai S S, Chen D, Takacs G, et al. Fast geometric re-ranking for image-based retrieval[C]∥Proceedings of the 2010 IEEE International Conference on Image Processing.Hong Kong: IEEE,2010:1029-1032.
[7] Zhao H, Li Q, Liu P. Hierarchical geometry verification via maximum entropy saliency in image retrieval[J]. Entropy,2014,16(7):3848-3865.
[8] Zhou W, Li H, Lu Y, et al. Sift match verification by geometric coding for large-scale partial-duplicate web image search[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 2013,9(1):1-18.
[9] Xie H, Gao K, Zhang Y, et al. Local geometric consistency constraint for image retrieval[C]∥Proceedings of the 2011 18th IEEE International Conference on Image Processing. Brussels, Belgium: IEEE,2011:101-104.
[10] https://dl.dropboxusercontent.com/u/42311725/DupGroundTruthDataset.rar[DB/OL],2014-07-10.
[11] Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabularies and fast spatial matching[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Barcelona, Spain, 2007:1-8.
[12] Wang X, Yang M, Cour T, et al. Contextual weighting for vocabulary tree based image retrieval[C]∥Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 2011:209-216.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邬开俊, 王春丽, 单亚州, 杜三山, 鲁怀伟. 噪声作用下的化学突触耦合神经元系统的同步[J]. 吉林大学学报(工学版), 2017, 47(5): 1554 -1560 .