吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1373-1384.doi: 10.13229/j.cnki.jdxbgxb201604051
• 论文 • 上一篇
梁云虹, 任露泉
LIANG Yun-hong, REN Lu-quan
摘要:
在实际需求的驱动、科学推动以及相关任务的促动下,现代仿生学的研究领域正变得越来越宽,仿生模本已从生物拓展到生活和生境。人类各种生活中所呈现的生活现象已成为人类研究仿生制品的灵感源头之一,是仿生学的重要资源。人类利用自身独有的创造性思维不断地发现自身生活中所蕴含的哲理,并以此为模本,发明新的技术和成果。生活仿生学蕴含着极其巨大的潜能,本文阐释了人类日常生活、人文生活和本体生活中所展现的智慧、艺术和哲理,这些正在成为人类最尖端、最前沿技术发明的源泉,成为仿生学原始创新的新领域,推动仿生制品向着更智能化、人文化的方向发展。
中图分类号:
[1] Ren L Q, Liang Y H. Preliminary studies on the basic factors of bionics[J]. Sci China Ser E-Tech Sci, 2014, 57(3): 520-530. [2] Izadinia M, Dehgani K. Structure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy produced by melt spinning[J]. Transactions of Nonferrous Metals,Society of China, 2011, 21: 2037-2043. [3] Cong H P, Ren X C, Wang P, et al. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers[J]. Scientific Reports,2012,612:1-6. [4] Fetsch C R, Pouget A, DeAngelis G C, et al. Neural correlates of reliability-based cue weighting during multisensory integration[J]. Nature Neuroscience, 2012, 15(1): 146-154. [5] Johnson F E. The Bionic Human: Health Promotion for People with Implanted Prosthetic Devices[M]. Totowa, NJ:Humana Press, 2006. [6] Ozden S, Ge L, Narayanan T N, et al. Anisotropically functionalized carbon nanotube array based hygroscopic scaffolds[J]. Acs Applied Materials & Interfaces, 2014, 6: 10608-10613. [7] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306: 666-669. [8] Fernandes M F A, Matthys D, Hryhorczuk C, et al. Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons[J]. Cell M Etabolism, 2015, 22(4): 741-749. [9] Hopkins M E, Davis F C, Vantieghem M R, et al. Differential effects of acute and regular physical exercise on cognition and affect[J]. Neuroscience, 2012, 215(1): 59-68. [10] Tierney A T, Krizman J, Kraus N. Music training alters the course of adolescent auditory development[J]. PANS, 2015, 112(32): 10062-10069. [11] Salimpoor V N, Benovoy M, Larcher K, et al. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music[J]. Nature Neuroscience,2011,14(2):257-262. [12] Bernardi L, Porta C, Casucci G, et al. Dynamic interactions between musical, cardiovascular, and cerebral rnythms in humans[J]. Circulation,2009,119(25):3171-3180. [13] Denis T, Miha B,Reis P M. Smart morphable surfaces for aerodynamic drag control[J]. Advanced Materials, 2014,26:6608-6611. [14] Xia Y, Nivet E, Sancho-Martinez I, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells[J]. Nature Cell Biology, 2013, 15: 1507-1515. [15] Dresler M, Koch S P, Wehrle R, et al. Dreamed movement elicits activation in the sensorimotor cortex[J]. Current Biology, 2011, 21: 1833-1837. [16] Helm E, Yao J, Dutt S, et al. REM sleep depotentiates amygdala activity to previous emotional experiences[J]. Current Biology, 2011, 21: 2029-2032. [17] Wamsley E J, Tucker M, Payne J D, et al. Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation[J]. Current Biology, 2010,20: 850-855. [18] Schmitz T W, Rosa E D, Anderson A K. Opposing influences of affective state valence on visual cortical encoding[J]. The Journal of Neuroscience, 2009,29(22): 7199-7207. [19] Mcpherson M J, Barrett F S, Lopez-Gonzalez M, et al. Emotional intent modulates the neural substrates of creativity: an fMRI study of emotionally targeted improvisation in jazz musicians[J]. Scientific Reports, 2016,6: 18460-18472. [20] Pessiglione M, Petrovic P, Daunizeau J, et al. Subliminal instrumental conditioning demonstrated in the human brain[J]. Neuron, 2008,59: 561-567. [21] Custers R, Aarts H. The unconscious will: how the pursuit of goals operates outside of conscious awareness[J]. Science, 2010,329: 47-50. [22] Feng G, Peng L, French J B,et al. Controlling cell-cell interactions using surface acoustic waves[J]. Proceedings of the National Academy of Sciences, 2015,112(1): 43-48. [23] Peppo G M, Marcos-Campos I, Kahler D J, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8680-8685. [24] Efe J A, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy[J]. Nature Cell Biology, 2011, 13(3): 215-222. [25] Bertassoni L E, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs[J]. Lab on a Chip, 2014,14(13): 2202-2211. [26] Kang H W, Lee S J, Ko I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016,34(3): 312-319. [27] Murphy S V, Atala A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014,32(8): 773-785. [28] Pistono F. Robots will Steal Your Job, but that's Ok: how to Survive the Economic Collapse and be Happy[M]. US:CreateSpace Independent Publishing , 2012. [29] Zhang D, Song H, Xu R, et al. Toward a minimally invasive brain-computer interface using a single subdural channel: a visual speller study[J]. Neuroimage, 2013, 71: 30-41. [30] Todd A. Kuiken, Guanglin Li, Blair A. Lock,et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms FREE[J]. The Journal of the American Medical Association, 2009, 301(6):619-628. [31] Chen C H, Gutierrez E D, Thompson W, et al. Hierarchical genetic organization of human cortical surface area[J]. Science, 2012, 335: 1634-1636. [32] Rosanne M T, Gregory H, Daniel A P. Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation[J]. The Journal of Neuroscience,2007,27(11):2734-2743. [33] Haman J. The Shark's Paintbrush: Biomimicry and How Nature is Inspiring Innovation[M]. United States: Nicholas Brealey, 2013. |
[1] | 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792. |
[2] | 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798. |
[3] | 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820. |
[4] | 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211. |
[5] | 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184. |
[6] | 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193. |
[7] | 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551. |
[8] | 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986. |
[9] | 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545. |
[10] | 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756. |
[11] | 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862. |
[12] | 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868. |
[13] | 杨卓娟, 王庆成, 高英, 门玉琢, 杨晓东. 不同溶液对荷叶润湿性能的影响[J]. 吉林大学学报(工学版), 2015, 45(6): 1869-1873. |
[14] | 田为军, 王骥月, 李明, 陈思远, 刘方圆, 丛茜. 小型水平轴风力机叶片仿生设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1495-1501. |
[15] | 田桂中, 刘之岭, 周宏根, 宋江超, 朱涛. 家蚕前部丝腺准静态轴向拉伸力学特性[J]. 吉林大学学报(工学版), 2015, 45(3): 872-877. |
|