吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1273-1279.doi: 10.13229/j.cnki.jdxbgxb201704037
李文辉1, 孙明玉1, 曹春红2
LI Wen-hui1, SUN Ming-yu1, CAO Chun-hong2
摘要: 为了有效分解几何约束系统,本文提出了一种基于增量LMA(ILMA)算法的扩展C-树分解法,该方法将几何约束系统分解为一棵扩展C-树。与C-树分解法相比,该方法能够保证以任意装配几何约束的方式构造的扩展C-树是几何约束系统的最大化分解。实例分解结果表明:将本文方法应用于几何约束求解是行之有效的。
中图分类号:
[1] He Chun-hua, Zhang Xiang-wei, Lv Wen-ge. A new approach for solving geometric constraint based on Election-Survey Algorithm[C]//International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), Changchun, China, 2010, Hong Kong: IITA Association, 2012: 427-430. [2] Cao Chun-hong, Zhang Bin, Li Wen-hui. The research based on the composite particle swarm optimization algorithm in the geometric constraint solving[J].Journal of Image and Graphics, 2007, 12(4): 713-717. [3] Cao Chun-hong, Tang Chuan, Zhao Da-zhe, et al. Geometric constraint solving based on geese PSO optimization[J].Journal of Chinese Computer System, 2011, 32(11): 2299-2302. [4] Kondo K. Algebraic method for manipulation of dimensional relationships in geometric models[J]. Computer-Aided Design, 1992, 24(3): 141-147. [5] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509. [6] Lin Qiang, Gao Xiao-shan, Liu Yuan-yuan. The complete method based on geometric constraint solving[J].Journal of Computer- Aided Design & Computer Graphics, 2007, 19(7): 828-834. [7] Owen J. Algebraic solution for geometry from dimensional constra- ints[C]//Proceedings of ACM Symposiumon Solid Modeling Foundation, Austin, TX, 1991, 397-407. [8] Owen J. Constraints of simple geometry in two and three dimensions[J]. Intemational Journal of Computer Geometry and Its Applieations, 1996, 6(5): 421-423. [9] Fudos I, Hoffmann C M. A graph-constructive approach to solving systems of geometric constraints[J]. ACM Transactions on Graphics, 1997, 16(2): 179-216. [10] Hoffmann C M. Geometric Constraint Solving in R2 and R3[M]. In: Du D Z, Huang F, eds. Computing in Euclidean Geometry. Singapore: World Scientific, 1995. 266-298. [11] Hoffmann C M, Lomonosov A, Sitharam M. Finding solvable subsets of constraint graphs[C]//Principles and Practice of Constraint Programming-CP97, Third International Conference, Linz, Austria,1997:463-477. [12] Hoffmann C M, Lomonosov A, Sitharam M. Decomposition plans for geometric constraint systems: I[J]. Performance measures for CAD. J Symbolic Comput 2001; 31: 367-408. [13] Hoffmann C M, Lomonosov A, Sitharam M. Decomposition plans for geometric cons- traint systems. II[J]. New algorithms. J Symbolic Comput 2001; 31: 409-427. [14] Hoffmann C M, Lomonosov Andrew, Sitharam Meera. Decompo-sition plans for geom-etric constraint systems, Part I: Performance measures for CAD[J]. Journal of Symbolic Computation,2001,31(4): 367-408. [15] Samy Ait-Aoudia, Sebti Foufou. A 2D geometric constraint solver using a graph reduction method[J]. Advances in Engineering Software, 2010; 41: 1187-1194. [16] Latham R S, Middleditch A E. Connectivity analysis: a tool for processing geometric constraints[J]. Computer-Aided Design 1996,28: 917-928. [17] Gao X, Lin Q, Zhang G. A C-tree decomposition algorithm for 2D and 3D geometric constraint solving[J]. Computer-Aided Design, 2006; 38(1): 1-13. [18] Lee J Y, Kwon O-Hwan, Lee Jae-Yeol, et al. A hybrid approach to geometric constr- aint solving with grapg analysis and reduction[J]. Advance in Engineering Software, 2003, 34(2): 103-113. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[7] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[8] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[9] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[10] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[11] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[12] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[13] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[14] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
[15] | 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253. |
|