吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1617-1624.doi: 10.13229/j.cnki.jdxbgxb201705039

• • 上一篇    下一篇

一种高灵敏度Galileo E1B/C联合捕获方法

罗士栋1, 2, 巴晓辉1, 王云1, 陈杰1   

  1. 1.中国科学院 微电子研究所,北京 100029;
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-06-13 出版日期:2017-09-20 发布日期:2017-09-20
  • 通讯作者: 陈杰(1963-),男,研究员,博士生导师.研究方向:通信,多媒体处理,VLSI设计.E-mail:jchen@ime.ac.cn
  • 作者简介:罗士栋(1984-),男,助理研究员,博士研究生.研究方向:超大规模集成电路设计.E-mail:luoshidong@ime.ac.cn
  • 基金资助:
    国家自然科学基金项目(61376027)

Joint strategy for high sensitivity Galileo E1B/C signal acquisition

LUO Shi-dong1, 2, BA Xiao-hui1, WANG Yun1, CHEN Jie1   

  1. 1.Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-06-13 Online:2017-09-20 Published:2017-09-20

摘要: 提出了一种基于中频回放的Galileo E1B/C联合捕获架构,该架构可以时分复用处理E1B/C信号,之后将处理结果联合起来进行判决,相比只使用E1B或E1C信号有更高的发现概率,且不增加硬件规模。同时,本文提出了一种门限结合码相位判决方法,该方法利用门限以及中频数据不同起始点多次回放间卫星信号码片相关性,弱星发现概率相比传统恒虚警率门限判决方法有较大的提高,在系统虚警率为0.002, 载噪比低至27 dB·Hz情况下,捕获轮数为2,每轮取前10个最大值,门限结合码相位判决方法发现概率接近40%,而此时传统恒虚警率门限判决方法发现概率不足10%。

关键词: 通信技术, Galileo E1信号捕获, 中频回放, 门限结合码相位, 高灵敏度

Abstract: High sensitivity acquisition architecture for Galileo E1 signal is proposed. This architecture processes E1B/C signals by time-division multiplexing, and then joins the results together. Compared with individual E1B or E1C channel acquisition, higher detection probability is achieved without the increase in hardware burden. In addition, a novel decision strategy, named threshold combining code phase, is also proposed. The strategy utilizes threshold and the code phase correlation of correct cell between multiple Intermediate Frequency (IF) data replays with different starting point of each replay. Compared with traditional threshold decision strategy based constant false alarm rate, the proposed strategy enhances the detection probability. When overall false probability is 0.002 and Carrier to Noise Ratio (CNR) downs to 27 dBHz, the number of acquisition rounds is 2, and the top 10 maximum values are retained in each round, the overall detection probability of the decision strategy is near 40%, while the overall detection probability of the traditional threshold decision strategy is less than 10%.

Key words: communication technology, Galileo E1 signal acquisition, IF signal replay, threshold combines with code phase, high sensitivity

中图分类号: 

  • TN967.1
[1] Mattos P G. Acquisition of the Galileo OAS L1B/C signal for the massmarket receiver[C]∥ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA, USA, 2005: 13-16.
[2] Borio D, Presti L L. Data and pilot combining for composite GNSS signal acquisition[J]. International Journal on Navigation and Observation,doi:10.1155/2008/738183.
[3] Ta T H, Dovis F, Lesca R, et al. Comparison of joint data/pilot high-sensitivity acquisition strategies for indoor Galileo E1 signal[C]∥European Navigation Conference ENC-GNSS, Toulouse, France, 2008: 23-25.
[4] Adina Burian, Elena Simona Lohan, Markku Renfors. BPSK-like Methods for Hybrid-Search Acquisition of Galileo Signals[C]∥IEEE International Conference on Communications, Istanbul, Turkey, 2006:5211-5216.
[5] Dovis F,Lesca R,Boiero G,et al.A test-bed implementation of an acquisition system for indoor positioning[J].GPS Solution,2010,14(3):241-253.
[6] Musumeci L, Dovis F. Design of a very high sensitivity acquisition system for a space GNSS receiver[C]∥IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, 2014:556-568.
[7] Choi I H, Park S H, Cho D J, et al. A novel weak signal acquisition scheme for assisted GPS[C]∥15th Int Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA,2002:177-183.
[8] Parks S H, Choi I H, Lee S J, et al. A novel GPS initial synchronization scheme using decomposed differential matched filter[C]∥2002 National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 2002:246-253.
[9] Schmid A, Neubauer A. Perfomance evaluation of differential correlation for single shot measurement positioning[C]∥17th Int Technical Meeting of the Satellite Division of the Institute of Navigation, Long Beach, CA, 2004:1998-2009.
[10] Yu W, Zhen B, Watson R, et al. Differential combining for acquiring weak GPS signals[J]. Signal Process, 2007, 87 (5): 824-840.
[11] Kim Binhee, Kong Seung-Hyun. Two-dimensional compressed correlator for fast acquisition of CBOC-modulated signal in GNSS[C]∥IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, 2014:818-822.
[12] Dovis F, Presti L L, Fantino M, et al. Comparison between Galileo CBOC candidates and BOC(1,1) in terms of detection performance[J]. Int J Navig Obs,2008(2):83-88.
[13] 巴晓辉. GPS基带接收机算法及其SoC芯片实现研究[D].北京:中国科学院微电子研究所,2007.
Ba Xiao-hui. Research on algorithm and SoC implementation of GPS baseband receiver[D].Beijing: Institute of Microelectronics of Chinese Academy of Sciences,2007.
[14] 李健,陈杰.一种改进的北斗卫星信号并行捕获方法[J].宇航学报, 2014,35(11):1299-1305.
Li Jian,Chen Jie. An improved parallel acquisition method for BDS signals[J].Journal of Astronautics,2014,35(11):1299-1305.
[15] Borio D, Cmoriano L, Presti L L. Impact of GPS acquisiton strategy on decision probabilities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 996-1011.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .