吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1744-1752.doi: 10.13229/j.cnki.jdxbgxb201706010

• 论文 • 上一篇    下一篇

车辆作用下钢-混凝土组合简支梁动力特性

魏志刚1, 2, 时成林1, 3, 刘寒冰1, 张云龙4   

  1. 1.吉林大学 交通学院,长春 130022;
    2.吉林省高等级公路建设局,长春 130033;
    3.吉林省交通科学研究所 科研开发中心,长春 130012;
    4.吉林建筑大学 交通科学与工程学院,长春 130118
  • 收稿日期:2017-01-05 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 张云龙(1975-),男,副教授,博士.研究方向:桥梁检测与加固.E-mail:zhangyunlong@jlju.edu.cn
  • 作者简介:魏志刚(1977-),男,高级工程师,博士研究生.研究方向:桥梁检测与加固.E-mail:wzg770718@163.com
  • 基金资助:
    国家自然科学基金面上项目(51478203)

Dynamic characteristics of steel-concrete composite simply supported beam under vehicles

WEI Zhi-gang1, 2, SHI Cheng-lin1, 3, LIU Han-bing1, ZHANG Yun-long4   

  1. 1.College of Transportation,Jilin University,Changchun 130022, China;
    2.Jilin Provincial High Class Highway Construction Bureau, Changchun 130033, China;
    3.Scientific Research and Development Center, Jilin Provincial Transport Scientific Research Institute, Changchun 130012, China;
    4.School of Transportation Science & Engineering, Jilin Jianzhu University, Changchun 130118, China
  • Received:2017-01-05 Online:2017-11-20 Published:2017-11-20

摘要: 首先,在考虑组合梁结合面剪切滑移效应的情况下,推导了车辆作用下钢-混组合梁的刚度分布函数。然后,采用待定系数表达组合梁和车辆的振动位移函数。进而基于矩阵传递法的基本思想,根据变形协调及力的平衡条件,建立了以待定系数表达的整个车-组合梁振动系统的振动方程,根据该振动方程可以计算出车辆作用下钢-混凝土简支梁的自振频率和振型。最后,采用有限元方法验证了本文方法的有效性和可靠性。

关键词: 桥梁工程, 动力特性, 钢-混凝土组合梁桥, 剪切滑移

Abstract: In this paper, first, the stiffness distribution function of steel-concrete composite beam under vehicles is derived, in which the effect of share slip of the composite beam is considered. Then, the undetermined coefficients are used to express the vibration functions of the composite beam and the vehicles. Further, based on the matrix transfer method, the vibration equation of the vehicle-beam vibration system expressed by the undetermined coefficients is established using the deformation compatibility and the force equilibrium condition. The natural frequencies and mode shapes of the steel-concrete simply supported beam under vehicles can be calculated by this vibration equation. Finally, the validity and reliability of the presented method are verified by finite element method.

Key words: bridge engineering, dynamic characteristics, steel-concrete composite beam, shear slip

中图分类号: 

  • TU311
[1] 侯忠明,夏禾,王元清,等. 钢-混凝土组合梁动力折减系数研究[J]. 振动与冲击,2015,34(4):74-81.
Hou Zhong-ming,Xia He,Wang Yuan-qing,et al. Dynamic reduction coefficients for a steel-concrete composite beam[J]. Journal of Vibration and Shock,2015,34(4):74-81.
[2] 王景全,殷惠光,张书兵,等. 钢-混凝土组合梁考虑界面滑移的振动模态试验研究[J]. 建筑结构学报,2016,37(2):142-149.
Wang Jing-quan,Yin Hui-guang,Zhang Shu-bing,et al. Experimental investigation on dynamic properties of steel-concrete composite beams considering effect of interfacial slip[J]. Journal of Building Structures,2016,37(2):142-149.
[3] 程永春,谭国金,刘寒冰,等. 简支梁桥动态检测中跳车激励方法理论研究[J]. 振动工程学报,2009,22(5):474-479.
Cheng Yong-chun, Tan Guo-jin, Liu Han-bing, et al. Research of vehicle bump excitation in dynamic detection of simple supported bridge[J]. Journal of Vibration Engineering,2009,22(5):474-479.
[4] 谭国金. 中小跨径梁式桥动力检测技术及损伤识别方法研究[D]. 长春:吉林大学交通学院,2009.
Tan Guo-jin. Dynamic detection technique and damage identification method for beam bridges with small and medium span[D]. Changchun: College of Transportation, Jilin University,2009.
[5] 谭国金,刘子煜,王龙林,等. 车辆作用下中小跨径裂缝简支梁桥自振特性分析[J]. 振动工程学报,2016,29(5):831-841.
Tan Guo-jin, Liu Zi-yu, Wang Long-lin, et al. Free vibration analysis of a small or medium-span cracked simply supported bridge considering bridge-vehicle interaction[J]. Journal of Vibration Engineering,2016,29(5):831-841.
[6] Kim C Y, Jung D S, Kim N S, et al. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration[J]. Earthquake Engineering and Engineering Vibration,2003,2(1):109-115.
[7] 苏木标,梁振辉. 对车-桥系统自振特性的初探[J]. 石家庄铁道学院学报,1993,6(3):49-58.
Su Mu-biao, Liang Zhen-hui. A study of the free vibration characteristics of VBS[J]. Journal of Shijiazhuang Railway Institute,1993,6(3):49-58.
[8] de Roeck G, Maeck J, Michielsen T, et al. Traffic-induced shifts in modal properties of bridges[J]. The International Society for Optical Engineering,2002,4753:630-636.
[9] 程永春,谭国金,刘寒冰, 等. 车辆作用下的公路简支梁桥测试频率[J]. 吉林大学学报:工学版,2009,39(6):1492-1496.
Cheng Yong-chun,Tan Guo-jin,Liu Han-bing,et al. Test frequencies freely supported beam of highway bridge under effect of vehicles[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(6):1492-1496.
[10] Tan Guo-jin, Wang Wen-sheng, Jiao Yu-bo. Free vibration analysis of a cracked simply supported bridge considering bridge-vehicle interaction[J]. Journal of Vibroengineering,2016,18(6):3608-3635.
[11] 谭国金,宫亚峰,程永春,等. 基于有载频率的简支梁桥自振频率计算方法[J]. 振动工程学报,2011,24(1):31-35.
Tan Guo-jin, Gong Ya-feng, Cheng Yong-chun, et al. Calculation for natural frequency of simply supported beam bridges based on loaded frequency[J]. Journal of Vibration Engineering,2011,24(1):31-35.
[12] 刘寒冰,时成林,谭国金. 考虑剪切滑移效应的叠合梁有限元解[J]. 吉林大学学报:工学版,2016,46(3):792-797.
Liu Han-bing, Shi Cheng-lin, Tan Guo-jin. Finite element solution of composite beam with effect of shear slip[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(3):792-797.
[13] 时成林. 季冻区中小跨径桥梁桥面铺装及考虑其影响的主梁受力特性研究[D]. 长春:吉林大学交通学院,2016.
Shi Cheng-lin. Research on bridge deck pavement and mechanical characteristics of girder considering the influencing of deck pavement for medium-small span bridges in seasonal frozen area[D]. Changchun:College of Transportation,Jilin University,2016.
[14] Lin H Y, Tsai Y C. Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems[J]. Journal of Sound and Vibration,2007,302(3):442-456.
[1] 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734.
[2] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[3] 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[4] 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[5] 张云龙, 刘占莹, 吴春利, 王静. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[6] 刘寒冰, 时成林, 谭国金. 考虑剪切滑移效应的叠合梁有限元解[J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[7] 谭国金, 刘子煜, 魏海斌, 王龙林. 偏心直线预应力筋简支梁自振频率计算方法[J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[8] 曹珊珊, 雷俊卿. 考虑区间不确定性的钢结构疲劳寿命分析[J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[9] 刘寒冰, 时成林, 谭国金, 王华, 黄彬. 基于分段思想的变截面连续梁桥动力特性计算[J]. 吉林大学学报(工学版), 2015, 45(6): 1779-1783.
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
[11] 焦常科, 李爱群, 伍小平. 大跨双层斜拉桥多点激励地震响应[J]. , 2012, 42(04): 910-917.
[12] 辛大波, 王亮, 段忠东, 欧进萍, 李惠, 李忠华. 风雨联合作用下的桥梁主梁静力特性[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 174-179.
[13] 谭国金, 王龙林, 程永春. 基于灰色系统理论的寒冷地区斜拉桥索力状态预测方法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[14] 宫亚峰, 程永春, 焦峪波. 基于静力应变及遗传优化神经网络的城市立交桥梁损伤识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
[15] 刘寒冰, 郑继光, 邹品德. 叠合式钢筋混凝土圆截面短柱偏心受压承载力计算[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!